Search
Search Results
1 - 3 of 3 items
-
Research studies in didactics of mathematics supported by the Operant Motive Test
153-173Views:33The present paper reports a case-study which took place within an EUsupported international program organized for research and development of multi-grade schools (NEMED, [16] [26]). One of the main goals of the research was to develop the connection between disadvantageous social situations and the efficiency (success or failure) in learning mathematics especially from the point of view of average and above-average (talented) students: Why does the talent of children with socially disadvantageous background remain undiscovered? How can we make school mathematics more aware of hidden talents?
The author was looking for a didactical solution that compensated for social disadvantages without restricting the development of "average" students by using sociological, educational, psychological and mathematical (experimental and theoretical) studies in interaction with a series of experimental (hypothesis testing and exploratory) investigations.
We constructed tools and methods for exploration and experimental teaching, adapted to Hungarian conditions (Curriculum Development, teacher training, materials, interviews, Kuhl's motivation test, Malara's "researchers and practicing teachers in cooperation" method, etc., see [18], [20]).
The teaching materials and methodological guidelines are based on Bruner's representation theory (see [5]). The empirical research took place in 16 multi-grade schools located in different parts of the country. The author co-operated with nearly 250 students and 25 teachers for 3 years. In this paper we try to demonstrate how an Operant Motive Test can be involved in this research (see [18]). -
Forming the concept of congruence II.
1-12Views:32This paper is a continuation of the article Forming the concept of congruence I., where I gave theoretical background to the topic, description of the traditional method of representing the isometries of the plane with its effect on the evolution of congruence concept.
In this paper I describe a new method of representing the isometries of the plane. This method is closer to the abstract idea of 3-dimensional motion. The planar isometries are considered as restrictions of 3-dimensional motions and these are represented with free translocations given by flags.
About the terminology: I use some important concepts connected to teaching of congruence, which have to be distinguished. My goal is to analyse different teaching methods of the 2-dimensional congruencies. I use the term 3-dimensional motion for the orientation preserving (direct) 3-dimensional isometry (which is also called rigid motion or rigid body move). When referring the concrete manipulative representation of the planar congruencies I will use the term translocation. -
Forming the concept of congruence I.
181-192Views:11Teaching isometries of the plane plays a major role in the formation of the congruence-concept in the Hungarian curricula.
In the present paper I investigate the way the isometries of the plane are traditionally introduced in most of the textbooks, especially the influence of the representations on the congruence concept, created in the teaching process.
I am going to publish a second part on this topic about a non-traditional approach (Forming the concept of congruence II). The main idea is to introduce the isometries of the two dimensional plane with the help of concrete, enactive experiences in the three dimensional space, using transparent paper as a legitimate enactive tool for building the concept of geometric motion. I will show that this is both in strict analogy with the axioms of 3-dimensional motion and at the same time close to the children's intuitive concept of congruence.
1 - 3 of 3 items