Search
Search Results
-
On some problems on composition of arithmetic functions
161-181Views:17The main goal of this paper is to investigate some problems related to the commutativity of the composition of arithmetic functions. The concept of commutativity arises many times in high school maths, so it is natural to study the composition of functions, namely the equation f(g(n)) = g(f(n)), where f and g are such well known arithmetic functions as d(n), φ(n), σ(n), ω(n), or Ω(n). We study various aspects of solvability: can we exhibit infinitely many solutions; can we determine every solution; can we find suitable values in the range of both functions f and g for which the equation is, or is not solvable, respectively. We need just the basic facts about the above functions,and we use only elementary methods in the proofs. We present some interesting questions, their solutions, and raise some unsolved problems. We found that this topic can be discussed well in secondary school, mainly within the framework of group study sessions as we had some classes with a group of kids in 9th grade. We summarize the experiences of this experiment in the last section. -
Diophantine equations concerning various means of binomial coefficients
71-79Views:29The main goal of this paper is to show by elementary methods, that there are infinitely many different pairs of binomial coefficients of the form (n C 2) such that also their arithmetic, geometric and harmonic means, resp. have the same form. We give all solutions for the arithmetic mean. We also give infinitely many non-trivial solutions for the arithmetic mean of three binomial coefficients satisfying some special conditions. The proofs require the solution of some other interesting Diophantine equations, too. Since the author is also a secondary school teacher, we use elementary methods that mostly can be discussed in secondary school, mainly within the framework of group study sessions. This explains why the means are generally analysed for two terms and for binomial coefficients with "lower" value 2, since further generalizations require substantially deeper mathematical methods which are beyond the frames of this paper. -
Arithmetic progressions of higher order
225-239Views:28The aim of this article is to clarify the role of arithmetic progressions of higher order in the set of all progressions. It is important to perceive them as the pairs of progressions closely connected by simple relations of differential or cumulative progressions, i.e. by operations denoted in the text by r and s. This duality affords in a natural way the concept of an alternating arithmetic progression that deserves further studies. All these progressions can be identified with polynomials and very special, explicitly described, recursive progressions. The results mentioned here point to a very close relationship among a series of mathematical objects and to the importance of combinatorial numbers; they are presented in a form accessible to the graduates of secondary schools. -
Regula falsi in lower secondary school education II
121-142Views:93The aim of this paper is to investigate the pupils' word problem solving strategies in lower secondary school education. Students prior experiences with solving word problems by arithmetic methods can create serious difficulties in the transition from arithmetic to algebra. The arithmetical methods are mainly based on manipulation with numbers. When pupils are faced with the methods of algebra they often have difficulty in formulating algebraic equations to represent the information given in word problems. Their troubles are manifested in the meaning they give to the unknown, their interpretation what an equation is, and the methods they choose to set up and solve equations. Therefore they mainly use arithmetical and numerical checking methods to solve word problems. In this situation it is necessary to introduce alternative methods which make the transition from arithmetic to algebra more smooth. In the following we will give a detailed presentation of the false position method. In our opinion this method is useful in the lower secondary school educational processes, especially to reduce the great number of random trial-and-error problem solving attempts among the lower secondary school pupils. We will also show the results of some problem solving activities among grade 6-8 pupils. We analysed their problem solving strategies and we compared our findings with the results of other research works.
Subject Classification: 97-03, 97-11, 97B10, 97B50, 97D40, 97F10, 97H10, 97H20, 97H30, 97N10, 97N20
-
Transition from arithmetic to algebra in primary school education
225-248Views:35The main aim of this paper is to report a study that explores the thinking strategies and the most frequent errors of Hungarian grade 5-8 students in solving some problems involving arithmetical first-degree equations. The present study also aims at identifying the main arithmetical strategies attempted to solve a problem that can be solved algebraically. The analysis focuses on the shifts from arithmetic computations to algebraic thinking and procedures. Our second aim was to identify the main difficulties which students face when they have to deal with mathematical word problems. The errors made by students were categorized by stages in the problem solving process. The students' written works were analyzed seeking for patterns and regularities concerning both of the methods used by the students and the errors which occured in the problem solving process. In this paper, three prominent error types and their causes are discussed. -
Number theory vs. Hungarian high school textbooks: the fundamental theorem of arithmetic
209-223Views:16We investigate how Hungarian highschool textbooks handle basic notions and terms of number theory. We concentrate on the presentation of the fundamental theorem of arithmetic, the least common multiple and greatest common divisor. Eight families of textbooks is analyzed. We made interviews with the authors of four of them. We conclude that a slightly more precise introduction would not be harmful for pupils and could bring basic number theory closer to them. -
Mathematical gems of Debrecen old mathematical textbooks from the 16-18th centuries
73-110Views:29In the Great Library of the Debrecen Reformed College (Hungary) we find a lot of old mathematical textbooks. We present: Arithmetic of Debrecen (1577), Maróthi's Arithmetic (1743), Hatvani's introductio (1757), Karacs's Figurae Geometricae (1788), Segner's Anfangsgründe (1764) and Mayer's Mathematischer Atlas (1745). These old mathematical textbooks let us know facts about real life of the 16-18th centuries, the contemporary level of sciences, learning and teaching methods. They are rich sources of motivation in the teaching of mathematics. -
Prime building blocks in the mathematics classroom
217-228Views:148This theoretical paper is devoted to the presentation of the manifold opportunities in using a little-known but powerful mathematical manipulative, the so-called prime building blocks, originally invented by two close followers of Tamás Varga, to support discovery of various concepts in arithmetic in middle school, including the Fundamental Theorem of Arithmetic or as it is widely taught, prime factorization. The study focuses on a teaching proposal to show how students can learn about greatest common divisor (GCD) and least common multiple (LCM) with understanding, and meanwhile addresses internal connections and levels of abstractness within elementary number theory. The mathematical and methodological background to understanding different aspects of the concept prime property are discussed and the benefits of using prime building blocks to scaffold students’ discovery are highlighted. Although the proposal was designed to be suitable for Hungarian sixth graders, mathematical context and indications for the use of the manipulative in both primary and high school are given.
Subject Classification: F60, C30, E40, U60
-
What can we learn from Tamás Varga’s work regarding the arithmetic-algebra transition?
39-50Views:82Tamás Varga’s Complex Mathematics Education program plays an important role in Hungarian mathematics education. In this program, attention is given to the continuous “movement” between concrete and abstract levels. In the process of transition from arithmetic to algebra, the learner moves from a concrete level to a more abstract level. In our research, we aim to track the transition process from arithmetic to algebra by studying the 5-8-grader textbooks and teacher manuals edited under Tamás Varga's supervision. For this, we use the appearance of “working backward” and “use an equation” heuristic strategies in the examined textbooks and manuals, which play a central role in the mentioned process.
Subject Classification: 97-01, 97-03, 97D50
-
Some Pythagorean type equations concerning arithmetic functions
157-179Views:59We investigate some equations involving the number of divisors d(n); the sum of divisors σ(n); Euler's totient function ϕ(n); the number of distinct prime factors ω(n); and the number of all prime factors (counted with multiplicity) Ω(n). The first part deals with equation f(xy) + f(xz) = f(yz). In the second part, as an analogy to x2 + y2 = z2, we study equation f(x2) + f(y2) = f(z2) and its generalization to higher degrees and more terms. We use just elementary methods and basic facts about the above functions and indicate why and how to discuss this topic in group study sessions or special maths classes of secondary schools in the framework of inquiry based learning.
Subject Classification: 97F60, 11A25
-
The sum of the same powers of the first n positive integers and the Bernoulli numbers
91-105Views:29The first part of this paper presents a method to calculate the sum of the same powers of the first n positive integers which is non-recursive and easy to express algorithmically. The application is demonstrated through several problems, for example by calculating the sum of arithmetic progression of degree p. The second part of the paper shows that the discussed procedure can also be used to calculate the Bernoulli numbers, and then, with the help of a known theorem, a link is established between the sum of the same powers of the first n positive integers and the Bernoulli numbers. -
Designing a 'modern' abacus for early childhood mathematics
187-199Views:29In this paper, the design of a multi-material, the 'modern' abacus ('modabacus'), for developing early childhood mathematics, is proposed. Presenting the main theories for the design of educational materials as well as similar materials and their educational use, it appears that a new material is needed. The 'modabacus' would be an apparatus which could serve as a multi-material for acting out mathematical tasks as well as a material that could hopefully overcome the limits and restrictions of traditional abacuses and counting boards. -
Maximum and minimum problems in secondary school education
81-98Views:31The aim of this paper is to offer some possible ways of solving extreme value problems by elementary methods with which the generally available method of differential calculus can be avoided. We line up some problems which can be solved by the usage of these elementary methods in secondary school education. The importance of the extremum problems is ignored in the regular curriculum; however they are in the main stream of competition problems – therefore they are useful tools in the selection and development of talented students. The extremum problem-solving by elementary methods means the replacement of the methods of differential calculus (which are quite stereotyped) by the elementary methods collected from different fields of Mathematics, such as elementary inequalities between geometric, arithmetic and square means, the codomain of the quadratic and trigonometric functions, etc. In the first part we show some patterns that students can imitate in solving similar problems. These patterns could also provide some ideas for Hungarian teachers on how to introduce this topic in their practice. In the second part we discuss the results of a survey carried out in two secondary schools and we formulate our conclusion concerning the improvement of students' performance in solving these kind of problems. -
Mathematical Doctoral School of the Mathematical Seminar of the University of Debrecen at the beginning of the 20th century (Debrecen, 1927-1940)
195-214Views:18In this article, we present the life and carrier of Professor Lajos Dávid, and those 16 mathematical dissertations, along with their authors, which were written under the supervision of Professor Dávid between 1927 and 1940. At the time mentioned, Lajos Dávid was the leader of the Mathematical Seminar of the University of Debrecen. The themes of the dissertations were connected with his scientific work, such as the history of mathematics (the two Bolyais), or his research work in mathematical analysis (arithmetic-geometric mean). -
Application of computer algebra systems in automatic assessment of math skills
395-408Views:36Mathematics is one of those areas of education, where the student's progress is measured almost solely by testing his or her ability of problem solving. It has been two years now that the authors develop and use Web-based math courses where the assessment of student's progress is fully automatic. More than 150 types of problems in linear algebra and calculus have been implemented in the form of Java-driven tests. Those tests that involve symbolic computations are linked with Mathematica computational kernel through the Jlink mechanism. An individual test features random generation of an unlimited number of problems of a given type with difficulty level being controlled flat design time. Each test incorporates the evaluation of the student's solution. Various methods of grading can be set at design time, depending on the particular purpose that a test is used for (self-assessment or administrative exam). Each test is equipped with the correct solution presentation on demand. In those problems that involve a considerable amount of computational effort (e.g. Gauss elimination), additional special tools are offered in a test window so that the student can concentrate on the method of solution rather than on arithmetic computations. (Another obvious benefit is that the student is thus protected from the risk of frustrating computational errors). Individual tests can be combined into comprehensive exams whose parameters can be set up at design time (e.g., number of problems, difficulty level, grading system, time allowed for solution). The results of an exam can be automatically stored in a database with all authentication and security requirements satisfied. -
The appearance of the characteristic features of the mathematical thinking in the thinking of a chess player
201-211Views:34It is more and more important in 21st century's education that not only facts and subject knowledge should be taught but also the ways and methods of thinking should be learnt by students. Thinking is a human specificity which is significant both in mathematics and chess. The exercises aimed at beginner chess players are appropriate to demonstrate to students the mathematical thinking of 12-14 year-old students.
Playing chess is an abstract activity. During the game we use abstract concepts (e.g. sacrifice, stalemate). When solving a chess problem we use logical quantifiers frequently (e.g. in the case of any move of white, black has a move that...). Among the endgames we find many examples (e.g. exceptional draw options) that state impossibility. Affirmation of existence is frequent in a mate position with many moves. We know there is a mate but the question in these cases is how it can be delivered.
We present the chess problem on beginners' level although these exercises appear in the game of advanced players and chess masters too, in a more complex form. We chose the mathematical tasks from arithmetic, number theory, geometry and the topic of equations. Students encounter these in classes, admission exams and student circles. Revealing the common features of mathematical and chess thinking shows how we can help the development of students' mathematical skills with the education of chess. -
Number theory vs. Hungarian highschool textbooks: √2 is irrational
139-152Views:26According to the Hungarian National Curriculum the proof of the irrationality of √2 is considered in grade 10. We analyze the standard proofs from the textbooks and give some mathematical arguments that those reasonings are neither appropriate nor sufficient. We suggest that the proof should involve the fundamental theorem of arithmetic. -
The theory of functional equations in high school education
345-360Views:40In this paper, we are going to discuss some possible applications of the theory of functional equations in high school education. We would like to line up some problems, the solution of which by functional equations are mostly not new results – they have also been treated in [1] and [2] –, although their demonstrations in high school can show a new way in teaching of talented students. The area of the rectangle, the calculating method of compound interest, binomial coefficients, Euler's formula, the scalar product and the vector product of vectors – we are looking for the reasons behind the well-known formulas. Finally, we are going to give a functional equation in connection with mean values. It can be understood easily, but its solution is beyond the high school curriculum, so we advise this part only to the most talented students. -
Solving Diophantine equations with binomial coefficients in study group sessions using both elementary and higher mathematical methods
1-12Views:28The paper can be considered as the continuation of [4] in the sense that we are studying Diophantine equations containing binomial coefficients. It was an important aspect that one should be able to discuss these problems — even if not in complete depth — also in high school study group sessions with the most talented students. We present various methods through several examples, which help the successful handling of other questions too, including problems in math competitions. Our discussion starts with the elementary treatment of easier problems, and then proceed gradually to more difficult questions which require higher mathematical methods.