Search
Search Results
-
Sage and scribe – asymmetrical pair work that can easily fit into any mathematics lesson, yet still have cooperative benefits
133-164Views:498This article uses a case study experiment to learn the characteristics of a pair work, called the sage and scribe method (Kagan, 2008). We also wished to explore the positive and negative effects of the systematic application of this single cooperative element without any other structural changes during the lessons. In the case study experiment, we asked two teachers, accustomed to traditional frontal teaching methods, to substitute individual work tasks in their standard lesson plans with the sage and scribe method. Our experiments indicate that this method wastes insignificant time, requires little extra effort on the part of the teacher, yet has many of the positive effects of cooperative methods: in our experiments, students received immediate feedback, corrected each other’s mistakes, learned from each other in meaningful discussions and engaged in collaborative reasoning to address emerging problems.
Subject Classification: 97D40
-
Cooperative learning in teaching mathematics: the case of addition and subtraction of integers
117-136Views:99In the course of teaching and learning mathematics, many of the problems are caused by the operations with integers. My paper is a presentation of an experiment by which I tried to make the acquisition of these operations easier through the use of cooperative methods and representations. The experiment was conducted in The Lower-Secondary School of Paptamási from Romania, in the school year 2009-2010. I present the results of the experiment. -
Nice tiling, nice geometry!?!
269-280Views:100The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference. -
Teaching agile operation and leadership through linked university courses
1-32Views:176Agile software development methods, especially Scrum, are commonly used in software development companies. For this reason, our goal was that our undergraduate students gain experience as Scrum development team members and our master's students as agile leaders. To this end, we had redesigned and linked an undergraduate and a master's course, and launched the new course in the spring of 2021. The success of our approach was confirmed by a questionnaire survey of 86 undergraduate and 27 master's students. A/B testing was also performed. Our approach is a novelty compared to solutions where the Scrum Master is a course member, an instructor, or a university employee. In addition to being resource-efficient, it also offers master's students an unparalleled opportunity to develop agile leadership skills.
Subject Classification: 97U50
-
Differentiated instruction not only for Mathematics teachers
163-182Views:254The aim of differentiated development in a heterogeneous group of learners (DDHG) is to reduce school leaving without education, using an adaptive and innovative teaching-learning environment and using the most effective strategies, methods and techniques. Furthermore, this strategy helps in developing skills for learners and building cooperation between learners in heterogeneous classes through the use of the special, status-management educational procedure, and finally its strength is to sort the status ranking among learners, and to change the social structure of the class. Our goal is to figure out how to share best practices with teachers. One of the effective ways to renew teaching practice is through further training for teachers. As a trainer of the Logic-based subprogram of the Complex Basic Program (CBP) the author of the paper has experienced how well logic-based and decision-making strategies work in other subjects as well as in mathematics.
Subject Classification: 97D40
-
Strategies used in solving proportion problems among seventh-grade students
101-127Views:22In the 2023/2024 school year, 146 seventh-grade Hungarian students (aged 12-13) participated in our classroom experiment on solving proportion problems. At the beginning and the end of the teaching phase, both the experimental and the control groups solved a test. Regarding the answers of the students, in the pre- and post-test mostly consisting of word problems, we examined the success of solving the problems, as well as the solution strategies. For this, we used the strategies of proportional thinking that already exist in the literature of mathematical didactics. We intended to answer the following questions: To what extent and in which ways do the different types of problems and texts influence the solution strategies chosen by the students? How successfully do seventh-grade students solve proportion problems?
Subject Classification: 97D50, 97F80
-
Mathematical gems of Debrecen old mathematical textbooks from the 16-18th centuries
73-110Views:75In the Great Library of the Debrecen Reformed College (Hungary) we find a lot of old mathematical textbooks. We present: Arithmetic of Debrecen (1577), Maróthi's Arithmetic (1743), Hatvani's introductio (1757), Karacs's Figurae Geometricae (1788), Segner's Anfangsgründe (1764) and Mayer's Mathematischer Atlas (1745). These old mathematical textbooks let us know facts about real life of the 16-18th centuries, the contemporary level of sciences, learning and teaching methods. They are rich sources of motivation in the teaching of mathematics. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 21 – January 23, 2010, Debrecen, Hungary
177-195Views:88The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Debrecen, Hungary from January 21 to January 23, 2010. The 42 Hungarian participants – including 16 PhD students – came from 5 countries, 14 cities and represented 25 institutions of higher education. The abstracts of the talks and the posters and also the list of participants are presented in this report. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 30 - February 1, 2009, Debrecen, Hungary
165-186Views:99The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Debrecen, Hungary from January 30 to February 1, 2009. The 49 Hungarian participants – including 15 PhD students – came from 18 cities and represented 29 institutions of higher education. The abstracts of the talks and the posters and also the list of participants are presented in this report. -
Solving word problems - a crucial step in lower secondary school education
47-68Views:240Algebra is considered one of the most important parts of Mathematics teaching and learning, because it lays the foundations of abstract thinking as well as reasoning abilities among the lower secondary school pupils who have just transited from the world of numbers and computations to the area of equalities, signs, symbols and letters. The present article focuses on the fact that how the transition from arithmetic to algebra can be made more smooth. We have concentrated our experiments towards the approach of algebraic reasoning and its utilities in filling the gap between arithmetic and beginning algebra in lower secondary school education.We also underline the importance of another approach in overcoming the challenges in the transition from arithmetic to algebra, to enhance and make algebraic learning more effective, with special considerations to word problem-solving processes. In our opinion, we have to go through three phases in the introducing of algebra in Grade 7 Mathematics education: Regula Falsi method (based only on numerical calculations); functional approach to algebra (which combines the numerical computation with letter-symbolic manipulation); and writing equations to word problems. The conclusions of the present article would be helpful to Mathematics teachers for applying themselves to develop the pupils’ interest in word problem-solving processes during algebra teaching classroom activities.
Subject Classification: 97B10, 97C30, 97C50, 97D10, 97D40
-
Writing a textbook – as we do it
185-201Views:64Recent surveys studying mathematics teaching show that there is a great variety in the level of mathematics teaching in Hungary. To increase efficiency (and decrease differences between schools) it is essential to create textbooks with new attitudes. The experiment we started after the PISA survey of 2000, produced a textbook that is new, in some sense even unusual in its attitude and methods. This paper presents the experiences we gained in the course of this work. -
Research studies in didactics of mathematics supported by the Operant Motive Test
153-173Views:112The present paper reports a case-study which took place within an EUsupported international program organized for research and development of multi-grade schools (NEMED, [16] [26]). One of the main goals of the research was to develop the connection between disadvantageous social situations and the efficiency (success or failure) in learning mathematics especially from the point of view of average and above-average (talented) students: Why does the talent of children with socially disadvantageous background remain undiscovered? How can we make school mathematics more aware of hidden talents?
The author was looking for a didactical solution that compensated for social disadvantages without restricting the development of "average" students by using sociological, educational, psychological and mathematical (experimental and theoretical) studies in interaction with a series of experimental (hypothesis testing and exploratory) investigations.
We constructed tools and methods for exploration and experimental teaching, adapted to Hungarian conditions (Curriculum Development, teacher training, materials, interviews, Kuhl's motivation test, Malara's "researchers and practicing teachers in cooperation" method, etc., see [18], [20]).
The teaching materials and methodological guidelines are based on Bruner's representation theory (see [5]). The empirical research took place in 16 multi-grade schools located in different parts of the country. The author co-operated with nearly 250 students and 25 teachers for 3 years. In this paper we try to demonstrate how an Operant Motive Test can be involved in this research (see [18]). -
The single-source shortest paths algorithms and the dynamic programming
25-35Views:123In this paper we are going to present a teaching—learning method that help students look at three single-source shortest paths graph-algorithms from a so called "upperview": the algorithm based on the topological order of the nodes, the Dijkstra algorithm, the Bellman-Ford algorithm. The goal of the suggested method is, beyond the presentation of the algorithms, to offer the students a view that reveals them the basic and even the slight principal differences and similarities between the strategies. In order to succeed in this object, teachers should present the mentioned algorithms as cousin dynamic programming strategies. -
Some Remarks on History of Mathematical Problem Solving
51-64Views:111In this contribution, it is our goal is to look on history of mathematics as a resource for a long-term study of mathematical problem solving processes and heuristics. In this way we intend to get additional information, e. g., about heuristics which proved to be extremely successful to create new mathematics. "Changing representation" and "false position" are examples of such strategies, which are illustrated by concrete examples to demonstrate the use for classroom teaching and teacher education. Our methods are based on hermeneutic principles. -
Zur Visualisierung des Satzes von Pythagoras
217-228Views:67In this article we make a study of a not-classical visualization of the theorem of Pythagoras using methods of elementary school geometry. We find collinear points, copoint straight lines and congruent pairs of parallelograms. The configuration of their midpoints induces a six-midpoint and a four-midpoint theorem. -
Application of computer algebra systems in automatic assessment of math skills
395-408Views:130Mathematics is one of those areas of education, where the student's progress is measured almost solely by testing his or her ability of problem solving. It has been two years now that the authors develop and use Web-based math courses where the assessment of student's progress is fully automatic. More than 150 types of problems in linear algebra and calculus have been implemented in the form of Java-driven tests. Those tests that involve symbolic computations are linked with Mathematica computational kernel through the Jlink mechanism. An individual test features random generation of an unlimited number of problems of a given type with difficulty level being controlled flat design time. Each test incorporates the evaluation of the student's solution. Various methods of grading can be set at design time, depending on the particular purpose that a test is used for (self-assessment or administrative exam). Each test is equipped with the correct solution presentation on demand. In those problems that involve a considerable amount of computational effort (e.g. Gauss elimination), additional special tools are offered in a test window so that the student can concentrate on the method of solution rather than on arithmetic computations. (Another obvious benefit is that the student is thus protected from the risk of frustrating computational errors). Individual tests can be combined into comprehensive exams whose parameters can be set up at design time (e.g., number of problems, difficulty level, grading system, time allowed for solution). The results of an exam can be automatically stored in a database with all authentication and security requirements satisfied. -
Research on IT language use at a company
203-219Views:124The aim of the research of the IT language, used in the written documents of a company, is to contribute to the creation of a (mono- or bilingual) dictionary or encyclopaedia available for the public on the Internet, serving, among others, as a reference tool for the unified, controlled and unambiguous use of IT terms for students at various educational levels. To this ongoing work, the participation and cooperation of a panel of experts of different competences, linguists as well as IT experts, is indispensable.
The methods of corpus linguistics were used to carry out the research. The IT terms were separated from the texts and then a concordance software was used to see the environment of the IT words and phrases in which they occur. So their morphological analysis became possible.
The results of the research showed that a great number of Hungarian morphological language use problems stem from the way the IT terms are used in the documents. This paper lists, groups, analyses these phenomena.
The conclusions of the author are: (1) If such an Internet dictionary is used generally and consulted when e.g. somebody wants to write a composition or essay, translate an article, write a newspaper article, a scientific publication or a textbook to be taught at schools of different types and levels, etc. most of the communication noises could be filtered out. (2) At the same time it could promote the use of adequate (both in linguistic and technical meaning) Hungarian terms eliminating the "Hunglish" usage. (3) It could also contribute to the prevailing use of the relevant Hungarian terminology. Such a dictionary would be indispensable, not only in educational and industrial environments but in the electronic and traditional media as well. Last but not least, it could raise the level of different teaching materials (textbooks, e-materials, etc.) used in public and higher education. -
Examples of analogies and generalizations in synthetic geometry
19-39Views:87Teaching tools and different methods of generalizations and analogies are often used at different levels of education. Starting with primary grades, the students can be guided through simple aspects of collateral development of their studies. In middle school, high school and especially in entry-level courses in higher education, the extension of logical tools are possible and indicated.
In this article, the authors present an example of generalization and then of building the analogy in 3-D space for a given synthetic geometric problem in 2-D.
The idea can be followed, extended and developed further by teachers and students as well. -
Solving mathematical problems by using Maple factorization algorithms
293-297Views:112Computer algebra gives methods for manipulating mathematical expression. In this paper we use the Maple software to solve some elementary problems. Computeraided approach in the instruction of mathematics helps to impart problem solving skills to students. -
"Frontier algorithms"
139-152Views:101In this paper we present a new method to compare algorithm design strategies. As in case of frontier towns the cultures blend, the so called "frontier algorithms" are a mixture of different programming techniques like greedy, backtracking, divide and conquer, dynamic programming. In case of some of them the frontier character is hidden, so it has to be discovered. There are algorithms that combine different techniques purposively. Furthermore, determining the programming technique the algorithm is using can be a matter of point of view. The frontier algorithms represent special opportunities to highlight particular characteristics of the algorithm design strategies. According to our experience the frontier algorithms fit best to the revision classes. -
Supporting the education of engineering mathematics using the immediate feedback method
49-61Views:157In the literature, several methods are suggested to deal with problems regarding the efficiency of mathematics education including techniques that help integrate new knowledge into long-term memory. We examined how effective the application of the immediate feedback method is in teaching engineering mathematics. The article presents the method used and the results obtained during the study.
Subject Classification: 97D40, 97D60
-
Probabilistic thinking, characteristic features
13-36Views:102This paper is the first step in a series of a general research project on possible development in probability approach. Our goal is to check with quantitative methods how correct our presumptions formulated during our teaching experience were. In order to get an answer to this question, we conducted a survey among third-year students at our college about their general and scientific concepts as well as about the way they typically think. -
Task reformulation as a practical tool for formation of electronic digest of tasks
1-27Views:120Creative thinking as well as thinking itself is being developed at active learning-cognitive activity of students. To make mathematic matter a subject of interest and work of students at classes, it is efficacious to submit it in a form of tasks. The tasks may be set up in a purposeful system of tasks by means of which reaching the teaching goals in the sense of quality and durability of gained knowledge may be more effective. A suitable means for presentation of tasks with their characteristics (as e.g. didactic function and cognitive level) as well as task systems themselves is an electronic digest of tasks as a database. The analysis of textbooks and digests of tasks commonly used at schools in Slovakia shows that they do not include all the types of tasks necessary for setting up complete (in the sense of didactic functions) task systems. One of the most important methods used for formation of the missing tasks is reformulation of tasks. The individual strategies of task reformulation are explained in details on examples in this article. -
Exploring the basic concepts of Calculus through a case study on motion in gravitational space
111-132Views:184In universities, the Calculus course presents significant challenges year after year. In this article, we will demonstrate how to use methods of Realistic Mathematics Education (RME) to introduce the concepts of limits, differentiation, and integration based on high school kinematics and dynamics knowledge. All mathematical concepts are coherently built upon experiences, experiments, and fundamental dynamics knowledge related to motion in a gravitational field. With the help of worksheets created using GeoGebra or Microsoft Excel, students can conduct digital experiments and later independently visualize and relate abstract concepts to practical applications, thereby facilitating their understanding.
Subject Classification: 97D40, 97I40, 97M50