Search
Search Results
-
The use of different representations in teaching algebra, 9 th grade (14-15 years old)
29-42Views:33Learning Algebra causes many difficulties for students. For most of them Algebra means rote memorizing and applying several rules without understanding them which is a great danger in teaching Algebra. Using only symbolic representations and neglecting the enactive and iconic ones is a great danger in teaching Algebra, too. The latter two have a primary importance for average students.
In our study, we report about an action research carried out in a grade 9 class in a secondary school in Hungary.The results show that the use of enactive and iconic representations in algebra teaching develops the students' applicable knowledge, their problem solving knowledge and their problem solving ability. -
Answers offered by computer algebra systems to equations from school textbooks
125-138Views:35This paper is an attempt to develop a strategy and methods for investigating and comparing the answers offered by computer algebra systems and the school answers. After primary (pilot) investigation of how well 8 computer algebra systems handle equations from school textbooks, it is possible to conclude that the systems are mostly reliable and give reasonable answers. Some remarks regarding a somewhat unexpected answer obtained can be easily explained by built-in standards and notions, which can differ from school assumptions. In other cases the differences from school could be corrected by certain commands. -
Teaching reliability theory with the Computer Algebra System Maxima
45-75Views:32The use of the Computer Algebra System Maxima as a teaching aid in an MSc module in Reliability Theory is described here. Extracts from student handouts are used to show how the ideas in Reliability Theory are developed and how they are intertwined with their applications implemented in Maxima. Three themes from the lectures are used to illustrate this: (1) Normal Approximations, (2) Markov Modelling, (3) Laplace Transform Techniques.
It is argued that Maxima is a good tool for the task, since: it is fairly easy to learn & use; it is well documented; it has extensive facilities; it is available for any operating system; and, finally, it can be freely downloaded from the Web. Maxima proves to be a useful tool even for Reliability research for certain tasks. This latter feature provides a seamless link from teaching to research – an important feature in postgraduate education. -
Teaching meaningful mathematics with the Computer Algebra System MAXIMA using the example of inequalities
53-65Views:29The paper was originally motivated by the request to accentuate the meaningful contribution of inequalities in Mathematics Education. Additionally nationwide approved competences such as estimating come to the fore when organizing mathematical contents along some central Big Ideas. Not least the integration of computers enriches the reasonable discussion of inequalities by modern well accepted methodological principles. The freeware MAXIMA is used as Computer Algebra System (CAS) representatively. -
Geometry expressions: an interactive constraint based symbolic geometry system
303-310Views:25Dynamic geometry systems such as Geometers' SketchPad or Cabri are productive environments for the exploration of geometric relationships. They are, however, strictly numeric, and this limits their applicability where the interplay between geometry and algebra are being studied. We present Geometry Expressions – a dynamic symbolic geometry environment. While retaining the ease of use of a typical dynamic geometry environment, Geometry Expressions diverges by using constraints rather than constructions as the primary geometry specification mechanism and by working symbolically rather than numerically. Constraints, such as distances and angles, are specified symbolically. Symbolic measurements for quantities such as distances, angles, areas, locus equations, are automatically computed by the system. We outline how these features combine to create a rich dynamic environment for exploring the interplay between geometry and algebra, between induction and proof. -
Regula falsi in lower secondary school education II
121-142Views:93The aim of this paper is to investigate the pupils' word problem solving strategies in lower secondary school education. Students prior experiences with solving word problems by arithmetic methods can create serious difficulties in the transition from arithmetic to algebra. The arithmetical methods are mainly based on manipulation with numbers. When pupils are faced with the methods of algebra they often have difficulty in formulating algebraic equations to represent the information given in word problems. Their troubles are manifested in the meaning they give to the unknown, their interpretation what an equation is, and the methods they choose to set up and solve equations. Therefore they mainly use arithmetical and numerical checking methods to solve word problems. In this situation it is necessary to introduce alternative methods which make the transition from arithmetic to algebra more smooth. In the following we will give a detailed presentation of the false position method. In our opinion this method is useful in the lower secondary school educational processes, especially to reduce the great number of random trial-and-error problem solving attempts among the lower secondary school pupils. We will also show the results of some problem solving activities among grade 6-8 pupils. We analysed their problem solving strategies and we compared our findings with the results of other research works.
Subject Classification: 97-03, 97-11, 97B10, 97B50, 97D40, 97F10, 97H10, 97H20, 97H30, 97N10, 97N20
-
Learning and teaching combinatorics with Sage
389-398Views:45Learning Mathematics is not an easy task, since this subject works with especially abstract concepts and sophisticated deductions. Many students lose their interest in the subject due to lack of success. Computer algebra systems (CAS) provide new ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate concepts, deductions and algorithms and to make learning process more interesting especially in higher education. It is an even more efficient way to improve the learning process, if students can use the system themselves, which helps them to practice the curriculum.
Sage is a free, open-source math software system that supports research and teaching algebra, analysis, geometry, number theory, cryptography, numerical computation, and related areas. I have been using it for several years to aid the instruction of Discrete Mathematics at Óbuda University. In this article I show some examples how representations provided by this system can help in teaching combinatorics. -
Teaching probability theory by using a web based assessment system together with computer algebra
81-95Views:34In the course of Maths Basics 2, the Faculty of Economic Science students of Kaposvár University learn the classical chapters of Probability Theory, namely random variables and the well-known probability distributions. Our teaching experiences show that students' achievement is weaker in case of problems concerning continuous random variables. From school year 2012/13 we have had an opportunity to take Maple TA, the web-based test- and assessment system, into the course of education. It is sufficient for the users of Maple TA to have a browser. Maple computer algebra system, which runs on the server, assesses students' answers in an intelligent way, and compares them with the answers that are considered correct by the teacher. In our presentation we introduce some elements of Maple TA system, the didactic considerations the test sheets were made by, as well as our research results concerning the use of Maple TA. -
The unity of mathematics: a casebook comprising practical geometry number theory and linear algebra
1-34Views:28We give a sustained example, drawn largely from earlier publications, of how we may freely pursue a line of mathematical enquiry if we are not constrained, unnaturally, to confine ourselves to a single mathematical subdiscipline; and we draw conclusions from the study of this example which are relevant at many levels of mathematical instruction.
We also include the statement and proof of a new result (Theorem 4.1) in linear algebra which is obviously fundamental to the geometrical investigation which constitutes the leit-motif of the paper. -
CAS as a didactical challenge
379-393Views:33The paper starts with the discussion of a concept of general mathematics education (mathematics education for everyone). This concept views the focus of teaching mathematics in the reduction of the demands in the field of operative knowledge and skills as well as in an increase of the demands in the fields of basic knowledge and reflection. The consequences of this concept are didactically challenging for the use of Computer Algebra Systems (CAS) in the teaching of mathematics. By reducing the operative work we reduce exactly that field in which the original potential of CAS lies. It is shown that in such maths classes the main focus of CAS is on their use as a pedagogical tool, namely as support for the development of basic knowledge and reflection as well as a model of communication with mathematical experts. -
Solving mathematical problems by using Maple factorization algorithms
293-297Views:32Computer algebra gives methods for manipulating mathematical expression. In this paper we use the Maple software to solve some elementary problems. Computeraided approach in the instruction of mathematics helps to impart problem solving skills to students. -
What can we learn from Tamás Varga’s work regarding the arithmetic-algebra transition?
39-50Views:82Tamás Varga’s Complex Mathematics Education program plays an important role in Hungarian mathematics education. In this program, attention is given to the continuous “movement” between concrete and abstract levels. In the process of transition from arithmetic to algebra, the learner moves from a concrete level to a more abstract level. In our research, we aim to track the transition process from arithmetic to algebra by studying the 5-8-grader textbooks and teacher manuals edited under Tamás Varga's supervision. For this, we use the appearance of “working backward” and “use an equation” heuristic strategies in the examined textbooks and manuals, which play a central role in the mentioned process.
Subject Classification: 97-01, 97-03, 97D50
-
Teaching Fourier series, partial differential equations and their applications with help of computer algebra system
51-68Views:27In this paper, some examples of Fourier series and partial difference equations will be shown to demonstrate opportunities for CAS use in various circumstances. The well-known white-box – black-box teaching-learning techniques and the modularization will be used to allow the use of the same worksheet in different ways. -
Interactive web portals in mathematics
347-361Views:18Many of the recent problems in higher education (less contact seminars, the heterogeneity and the increasing number of our students) call for new instructional methods. At University of Szeged we have developed a mathematical web portal which can offer a solution for such problems among the changing circumstances. This freely available, easy-to-use web-surface supports interactive mathematical problem-solving and student self assessment. Our computer program cooperates with a lot of free software (computer algebra systems, formula parsers, converters, word processors). WebMathematics Interactive has been available for the public since June 2002 on its web page http://wmi.math.u-szeged.hu. -
An e-learning environment for elementary analysis: combining computer algebra, graphics and automated reasoning
13-34Views:34CreaComp is a project at the University of Linz, which aims at producing computer-supported interactive learning units for several mathematical topics at introductory university level. The units are available as Mathematica notebooks. For student experimentation we provide computational, graphical and reasoning tools as well. This paper focuses on the elementary analysis units.
The computational and graphical tools of the CreaComp learning environment facilitate the exploration of new mathematical objects and their properties (e.g., boundedness, continuity, limits of real valued functions). Using the provided tools students should be able to collect empirical data systematically and come up with conjectures. A CreaComp component allows the formulation of precise conjectures and the investigatation of their validity. The Theorema system, which has been integrated into the CreaComp learning environment, provides full predicate logic with a user-friendly twodimensional syntax and a couple of automated reasoners that produce proofs in an easy-to-read and natural presentation. We demonstrate the learning situations and the provided tools through several examples. -
GeoGebra in mathematics teaching
101-110Views:44GeoGebra is a dynamic mathematics software which combines dynamic geometry and computer algebra systems into an easy-to-use package. Its marvel lies in the fact that it offers both the geometrical and algebraic representation of each mathematical object (points, lines etc.). The present article gives a sample of the potential uses of GeoGebra for mathematics teaching in secondary schools. -
Transition from arithmetic to algebra in primary school education
225-248Views:35The main aim of this paper is to report a study that explores the thinking strategies and the most frequent errors of Hungarian grade 5-8 students in solving some problems involving arithmetical first-degree equations. The present study also aims at identifying the main arithmetical strategies attempted to solve a problem that can be solved algebraically. The analysis focuses on the shifts from arithmetic computations to algebraic thinking and procedures. Our second aim was to identify the main difficulties which students face when they have to deal with mathematical word problems. The errors made by students were categorized by stages in the problem solving process. The students' written works were analyzed seeking for patterns and regularities concerning both of the methods used by the students and the errors which occured in the problem solving process. In this paper, three prominent error types and their causes are discussed. -
Report on "The Computer Algebra and Dynamical Geometry Systems, as the catalysts of the Mathematics education": Conference, 6-7 June, 2003, Pécs, Hungary
259-269Views:10The Department of Mathematics of the University of Pécs, Pollack Mihály Engineering Faculty organized in the year 2003 a conference on the role of CAS and DGS in the Mathematics education. We discuss – based on the authors' abstracts – the conference's activities. -
Report on the First Central- and Eastern European Conference on Computer Algebra- and Dynamic Geometry Systems in Mathematics Education, 20-23 June, 2007, Pécs, Hungary
409-413Views:26The Department of Mathematics of the University of Pécs, Pollack Mihály Engineering Faculty organized in the year 2007 a conference on the role of CAS and DGS in the Mathematics education. We discuss the conference's activities. -
Decomposition of triangles into isosceles triangles II: complete solution of the problem by using a computer
275-300Views:29We solve an open decomposition problem in elementary geometry using pure mathematics and a computer programme, utilizing a computer algebra system. -
Application of computer algebra systems in automatic assessment of math skills
395-408Views:36Mathematics is one of those areas of education, where the student's progress is measured almost solely by testing his or her ability of problem solving. It has been two years now that the authors develop and use Web-based math courses where the assessment of student's progress is fully automatic. More than 150 types of problems in linear algebra and calculus have been implemented in the form of Java-driven tests. Those tests that involve symbolic computations are linked with Mathematica computational kernel through the Jlink mechanism. An individual test features random generation of an unlimited number of problems of a given type with difficulty level being controlled flat design time. Each test incorporates the evaluation of the student's solution. Various methods of grading can be set at design time, depending on the particular purpose that a test is used for (self-assessment or administrative exam). Each test is equipped with the correct solution presentation on demand. In those problems that involve a considerable amount of computational effort (e.g. Gauss elimination), additional special tools are offered in a test window so that the student can concentrate on the method of solution rather than on arithmetic computations. (Another obvious benefit is that the student is thus protected from the risk of frustrating computational errors). Individual tests can be combined into comprehensive exams whose parameters can be set up at design time (e.g., number of problems, difficulty level, grading system, time allowed for solution). The results of an exam can be automatically stored in a database with all authentication and security requirements satisfied. -
WMI2: interactive mathematics on the web
393-405Views:12After 5 years of experiments and feedback we decided to continue the software development on WebMathematics Interactive, a web-based e-learning tool, rewriting it from scratch. The demonstration version of WebMathematics Interactive 2 (WMI2) has been shown to the expert audience on the CADGME conference. In this article we summarize the development goals and results. -
Group Work at High School According to the Method of Tamás Varga
167-176Views:79The aim of our research is to develop students’ logical thinking. For this reason, Hungarian mathematics teachers need to be encouraged to try new methods which induce greater student involvement. Research all over the world prove that self-instruction or self-verbalizing has high effect on the learning process. This was one of the key elements of Tamás Varga’s experiment in high school. In our classroom experiments we are using a special cooperative method from Kagan among 14-18 years old students, called Sage and Scribe structure. We are looking for the answers to the following question: Does this method make mathematics lessons more enjoyable and more comfortable for students? Furthermore, we assume this structure could open the gate toward other collaborative and cooperative teaching technics.
Subject Classification: 97D40
-
Illustrated analysis of Rule of Four using Maple
383-404Views:37Rule of Four, as a basic didactic principle, was formulated among the NCTM 2000 standards (see [14]) and since then it is quoted by numerous books and publications (see [4], [9], [12]). Practically we can say it is accepted by the community of didactic experts. The usage of the Rule of Four, however, has been realized mainly in the field of calculus, in fact certain authors restrict the wording of the principle to the calculus itself (e.g. [3]).
Calculus is a pleasant field, indeed. A sequence of values of a function provides us with example for numeric representation, while the formula and the graph of the function illustrate symbolic and graphical representations, respectively. In the end by wording the basic features of the function on natural language we gain textual representation.
This idyllic scene, however, becomes more complex when we leave the frame of calculus. In this paper we investigate the consequences of the usage of Rule of Four outside calculus. We discuss the different types of representations and show several examples which make the multiple features of representation evident. The examples are from different fields of mathematics and are created by the computer algebra system Maple, which turns out to be an excellent tool for illustration and visualization of the maim features of mathematical objects.
Next we introduce the concept of basic representation and rational representation, which is considered as the mathematical notion of "didactic usable" or "didactic rational" representation. In the end we generalize the notion of numeric representation, which leads us a more widely usable didactic principle which can be considered as a generalization of Rule of Four. -
Forming the concept of parameter with examples of problem solving
201-215Views:31Pupils are encountering difficulties with learning algebra. In order for them to understand algebraic concepts, particularly the concept of parameter it was decided by the teacher of mathematics and Information Technology to integrate the teaching of these two subjects. The aim of this study is to investigate whether, and to what degree, software can be useful in process of forming the concept of parameter. This longitudinal study was conducted in a junior high school (13-16 year old children) using different computer programs.