Search

Published After
Published Before

Search Results

  • Effects of soil cultivation and environmental changes on maize yield
    97-100
    Views:
    143

    We evaluated the relationships among soil cultivation and other agrotechnical factors (fertilization, number of plants and hybrid) within the framework of a multifactorial long-term experiment set at the Látókép Experimental Site of the Centre for Agricultural Sciences of the University of Debrecen in mid-heavy chalcareous chernozem soil based on a long-term experiment conducted for a 5-year period (2002–2006).

    Based on the evaluation of soil cultivation by the average of treatments, it may be assessed that spring ploughing (8.204 t ha-1) provides more favourable conditions to the stand compared to spring shallow cultivation; however, this did not result in a significant difference. Spring ploughing considerably increased the yield of hybrid FAO 300 in dry years, whereas it considerably increased the yield of hybrid FAO 400 in favourable crop years. A stand of 70 thousand stems/ha provided the higher yield result in both soil cultivation types. It was sufficient to use a fertilizer dose of 120 kg N ha-1 for economical production.

  • Performance of agricultural factors on yield of  sweet corn (Zea mays L. Saccharata ) - A review
    143-156
    Views:
    56

     Sweet corn producers and industries require more reliable cultivars which could be accomplished by hybrid breeding. However, progressive phenological growth may be affected by different factors. In this paper, we analyze the key factors that determine the growth and yield of sweet corn. Environmental factors such as temperature and photoperiod were strong determinants of dates of flowering and harvest which are often crucial to yield in diverse climates and agricultural systems, besides the country's pedological conditions, especially soil fertility, affected phenological development. The effectiveness of fertilization in improving sweet corn growth performance was significantly influenced by the soil characteristics, the water supply, the genotype, and the agrotechnological factors. Therefore, genetic improvement of hybrids should be incorporated into the climate and soil elements to stabilize sweet corn yields in various agroecosystems. Decisions made in the sowing period are very significant, as up to 30% of the obtained yield may depend on making the proper choice. Deviation from the optimum date (either early or late sowing) may decrease yield. When deciding about the sowing date of maize, one needs to consider climate, soil quality, geographical location, temperature, weed infestation, sowing seed quality, and the ripening time of the hybrid to be produced.

  • Heavy Metals in Agricultural Soils
    85-89
    Views:
    72

    The soil constitutes the basis of the food chain. To keep soil conditions in a good trim is very important, it’s part of the sustainable development and of producing food supply harmless to health.
    In some cases, soil productivity is the only important part, qualitative requirements or economical characteristics can improve it. The soil is threatened by two danger factors: the soil degradation and the soil pollution. The accumulation of different harmful and/or toxic substances in the soil is well known. Heavy metals constitute a part of it. Metals in the soil and in the soil-solution are balanced. This balance depends on the type of the metal, on the pH, on the cation-band capacity of the soil, on the redox relations and the concentration of cations in the soil.
    To be able to handle the metal contamination of the soil, it is important to estimate the form, the possible extension and the concentration of metals.
    Of course, the different types of soils have different physical-chemical, biological and buffer capacity, they can moderate or reinforce the harmful effects of heavy metals. To draw general conclusion of the dispersion and quantitative relations on the metals originated from different contamination sources is hard, because in some emissive sources contamination is limited in small areas but on a high level, some others usually expand on larger areas, and as a result of equal dispersion, the contamination’s level is lower.
    Heavy metals – unlike alkali ions – strongly bond to organic materials, or infiltrate in a kelát form. Their outstanding characteristic is the tendency to create metal-complex forms. Kelats take part in the uptaking and transportation of heavy metals. Heavy metals exert their effects mostly as enzyme-activators.
    The metals cannot degrade in an organic way, they accumulate in living organisms, and they can form toxic compounds through biochemical reactions.
    Lot of the heavy metals accumulate on the boundaries of the abiotic systems (air/soil, water/sediment), when physical or chemical parameters change, and this influences their remobilization.
    Human activity plays a great part in heavy metal mobilization, results in the human origin of most biochemical process of metals.
    To understand the toxic influence of accumulated metals of high concentration, their transportation from soils to plants or their damage in human health, must clearly defined and investigated.
    For effective protection against soil pollution, the types and levels of harmful pollution to soil must identified, regarding legal, technical and soil-science aspects, preferable in a single way. Difficulties in this area mean that toxicity depends on loading, uptake, soil characteristics and living organisms (species, age, condition etc.), furthermore, local and economic conditions considerably differ.

  • Comparative analysis of Staphylococcus aureus strains by molecular microbiology methods
    34-39
    Views:
    128

    Staphylococcus aureus is a very important pathogen for dairy farms and milk processing plants. Subclinical mastitis is often caused by this species, and it can contaminate bulk tank milk when milking cows are suffering from mastitis. Additionally, thermostable enterotoxins (SE) produced by some types of this bacterium can cause food poisoning.
    The aim of our research was to examine the number of S. aureus in bulk tank milk in two dairy farms and the enterotoxin-producing ability, genetic relation (pulsotype) and antibiotic resistance of S. aureus strains from different sources (bulk tank milk, udder quarter milk and environment).
    The results show that the mean number of S. aureus of bulk tank milk of two farms significantly differed (P<0.05). Fourteen isolates were selected for further molecular genetic studies (five isolates were from bulk tank milk and nine isolates were from udder quarter milk). S. aureus was not recovered from the environmental samples. Three of the fourteen isolates (21.4%) tested by multiplex PCR were positive for SE genes. Two isolates carried one gene (seb) and one isolate carried two genes (seg and sei). The fourteen strains were classified into three pulsotypes and two subtypes at 86% similarity level. Isolates from bulk tank milk (n=5), were divided into 2 pulsotypes (A, C) and one subtype (C1). The isolates from udder quarter milk (n=9) belonged to three different pulsotypes (A, B, C) and two subtypes (A1, C1). The distribution of pulsotypes in the present study revealed genetic relationship between S. aureus isolated from udder quarter milk and bulk tank milk. This could be explained by the fact that in farms with a high number of infected cows, these cows could represent the main source of contamination. The results of the antibiotic resistance investigations show, that all strains were susceptible to methicillin, cefoxitin, lincomycin, tetracycline, erythromycin and sulfamethoxazole/trimethoprim. Thirteen out of fourteen strains were resistant to penicillin (A and C pulsotypes, A1 and C1 subtypes) and just one isolate was susceptible (B pulsotype) to all antibiotics tested.

  • Effect of soil-compost proportion on the abiotic and biotic parameters of soilplant system
    99-104
    Views:
    103

    The environmental awareness, coming to the front in the 21st century, motivates us to supply the plant nutrient demand (in point of the plant, the environment and the human health) with natural materials.
    Composting is known since the beginning of civilization. We came to know more the processes of composting as a result of last decades’ research, but numerous unexplained questions remained up to this day. The good compost is dark gray or brown, and it should not create an odor. It has aggregate structure, and it’s pH is neutral. Compost is soil-like (Fehér, 2001), nutrient-rich material, which contains valuable nutrients extracted from soil, so if we recycle this, we can decrease the chemical fertilizer and other (example: mineral energy) expenses.
    The reason of that we chose the more accurate cognition of compost utilization is to do more effective the site-specific nutrient supply. This increases the average yield and the quality of yield. Besides we can decrease the harmful effects, which endanger the plant, the environment, and the human body.
    During the compost utilization experiment we blended the  acid sandy soil with compost in 4 different volumetric proportions (5 treatments) than we set the pots randomized. The advantage of this method is that we can provide equal conditions for plants so we can measure the effect of  treatments correctly. Our experimental plant was ryegrass (Lolium perenne L.), that grows rapidly, tolerates the glasshouse conditions, and indicates the effect of treatments well. After the harvest of ryegrass we measured the fresh and dry weight of harvested leaves and the total C-, N-, S-content of the dry matter and of the soil, we examined the pH and the salt concentration of  soil as well. 
    Our aim was to study and evaluate the relations between the compost-soil proportion and the nutrient content of soil and plant. In our previous experiments we confirmed (based on variance analyses) that the compost has a beneficial effect on soil and increases the nutrient content of the soil (Szabó, 2009). But it’s important to appoint that the compound of compost is seasonally change: in winter the selective gathered municipal solid waste contains salt that were applied for non-skidding of roads, but salt has a negative effect to the plant. We proved that in our experiment the 25/75% compost/soil proportion was ideal for the plant. This content of compost effected 6 times higher green matter weight compared to the 100% sandy soil. 

  • In vitro analysis of the effect of ragweed extract against Monilinia laxa
    117-120
    Views:
    109

    Nowadays in Hungary nearly 5 million hectares of agricultural area was infected with ragweed (Ambrosia artemisiifolia). According to the public opinion the ragweed is a weed. From agricultural and public health point of view it is exceptionally dangerous plant. As it contains a number of useful active ingredients, based on this the  ragweed is consider a medicinal plant. Our goal was to present that the ragweed contains antifungal active substances as well. In the experiments we used the pre-flowering plants with roots and we extracted the biological active components of dried plant. We tested the biological activity of the extracts against Monilinia laxa in vitro. We related based on our examination that ragweed contains biologically active agents, by which it is hampered the reproduction of the Monilinia laxa.

  • Varietal dependent response of barley to soil-borne Waitea circinata infection
    100-106
    Views:
    160

    The disease syndrome caused by Waitea circinata, a soil-borne pathogen introduced in the past decade into Carpathian basin, visually indistinguishable of those caused by various Rhizoctonia strains in diverse host plant. Dicotyledonaceous species in general proved to be more tolerant to this new pathogen than monotyledonaceous ones. This mesophilic fungus can seriously damage cereals. The barley varieties, similarly to other plants, exhibited highly different individual reaction to soil borne infection, Bivoy being the most while Maresi the less tolerant among the 9 tested varieties. Two groups could be separated on the base of their response to Rhizoctonia; Jubilant, Bivoy, Pasadena formed one group being moderately tolerant and Anabell, Scarlett, Rex and Omega the other group of more susceptibles. Three significant factors influence on the virulence of Rhizoctonia strains comprised 62% of total variation.

  • Consumption of fertilizers in districts of Slovakia in the period 2006–2015
    389-398
    Views:
    164

    Consumption of fertilizers in districts of Slovakia in the period 2006–2015 Water quality in the surface streams is influenced by several factors. One of important information which can help us to solve problems with quality of water in water body is a distribution of point and non-point pollution sources in a river basin and also amount of pollutants released from them to surface streams. An example of a point source of pollution is the outlet from wastewater treatment plants (industry, urban areas, farms, etc.). On the other hand the most significant non-point source of pollution is considered the application of fertilizers in agriculture.

    In this paper we have evaluated consumption of organic and industrial fertilizers in Slovakia in the period 2006–2015. Total (in tonnes) and average (in kg ha-1) consumption of industrial and organic fertilizers was analyzed. In monitored period, the amount of applied organic fertilizers was much higher than the amount of applied industrial fertilizers and in addition a significant part of total fertilizers consumption had nitrogenous fertilizers in a group of industrial fertilizers. In a group of industrial fertilizers during the period 2006–2015 we observed just moderately increasing in their consumption, while in the period 2010–2015 the average amount of applied industrial fertilizers per hectare of agricultural land increased by about 20 kg ha-1. On the other hand, in a group of organic fertilizers we observed a decreasing in consumption of fertilizers.

  • Screening of paprika (Capsicum annuum L.) varieties resistant to NaCl salt stress
    105-110
    Views:
    142

    Salinity stress is one of the environmental factors that negatively affect the growth and production of pepper plants. The 100 seeds' weight was measured. The total fresh weight of five seedlings and the growth rate of one seedling of three paprika varieties were also measured under the influence of NaCl at a salinity level threshold of (3 dS m‑1). The proportion of tissue water content in three pepper cultivars was measured according to a mathematical formula at the end of the experiment. In terms of seed weight, the (Carma) cultivar outperformed other types greatly. Except for the superiority of both (Carma, and Bobita F1) over (Fokusz) variety in total fresh seedlings weight under sodium chloride as abiotic stress, there are no significant differences in the total seedlings' dry weight and the rate of seedling growth. The non-drought-resistant type (Bobita F1) loses water the fastest, at 89.61%, compared to drought-tolerant kinds, which lose water at a slower rate (Carma, and Fokusz). The results demonstrate the (Carma) variety's numerical vigor, particularly in the growth rate. More testing is needed to determine the selection of varieties that are resistant to abiotic and biotic stresses.

  • The Role of Cultivation Systems in Quality Sugar Beet Production
    134-138
    Views:
    105

    Producing sugar beet, as it is a demanding field crop, has contributed to the raising standard of plant production. It has an outstanding place among the plants that are cultivated in the intensive plant production system. Rentability of sugar manufacture is determined by the stability of yield and the quality (saccharose content) of sugar beet. In this way, the fundamental interest both of the producers and the processing industry is high yield and quality, year by year. The yield and the quality of the sugar beet are mainly determined by the plant production system, so we studied the effect of fertilization, irrigation and plant protection.

  • The examination of relation between the C/N ratio and the biogas yields in the Regional Biogas Plant of Nyírbátor
    63-68
    Views:
    100

    The Regional Biogas Plant of Nyírbátor was built by the Bátortrade Ltd. The biogas plant contains 6 mezophil and 6 thermophil fermentation tanks, because the biogas production is based on mixed compositions. The regional plant is a multifunctional system. It produces agricultural products and biogas with high methane content. The utilization of biogas is also accomplished here; gas-engines transform it to electricity and
    heat-energy. The product electricity is used by the local plants, the surplus is sold. 
    The aim of the research is the examination of the quality and quantity of the input materials that put into the mixers and follow the seasonal, periodical and optional changes of the input materials. The analyzation of the quality and quantity data can give an answer to the optional changes of biogas production because the input materials determine the composition of the examined recipe. The C/N ratio was between 11-13, the maximal value of the biogas yield was observed by 12.35 C/N ratio.

  • Testing a biological active plant extract’s antifungal effect against soil fungi
    247-252
    Views:
    102

    In Hungary today is about 5 million hectares of agricultural land contaminated with ragweed. The ragweed problem a year is about 60 billion HUF to be paid, of which 30 billion are used to reduce the agricultural damage. Experiments with ragweed pollen has mainly been carried out in connection with terms of allergy. The other biochemical experiments and studies with this plant, have so far been the scientific horizons of public life, boosted the edge. We wanted to demonstrate that the ragweed, which is a weed, containsbiological active (for example: antifungal) compounds. For our experiments in the previous cycle of flowering, plants were collected manually, with its roots and with each plant part. The extraction of the substance from dry plant – meal was carried out using appropriate solvents. The biological activity of ragweed-extracts were tested against fungi isolated from soils and meadow with different mode of cultivation. Our results suggest that ragweed contains biologically active substances, which inhibit the growth of fungi, depending on the concentration of active ingredients of the plant.

  • The role of non-optimum Fe-Zn ratio in the development of latent zinc shortage in cucumber (Cucumis sativus L.)
    7-11
    Views:
    128

    The general micronutrient deficiency of the soils influences the quality of food production which causes human health problems in several countries as well. The non optimal Fe-Zn ratio can cause latent zinc deficiency – which the plants response in the function of their sensitivity –what has no visual symptoms or the plant shows deficiency symptoms in case of appropriate zinc supply. This phenomenon can cause significant decrease in the crop yield.

    The aim of this study was to prove the role of non optimal Fe-Zn ratio in the evalution of latent zinc deficiency.

    The non optimal Fe-Zn ratio caused decrease in the number of the leaves, the number and length of the internodes, the relative chlorophyll contents and in the dry matter production. According to the results the non optimal Fe-Zn ratio caused difficulties in the metabolism, which decreased the examined plant physiological parameters in the most cases. It can be concluded if there are higher iron contents in the tissues than zinc it can result latent zinc deficiency.

  • Seasonal changes of photosynthetical parameters as a results of forest gap model
    133-136
    Views:
    145

    Photosynthetic parameters of English oak (Quercus robur L.) as a member of Querco robori-Carpinetum were investigated in two different habitat in terms of gap forest management: in the gap and in the host forest. The artifical opening process of the forest resulted in more light for growing saplings and need for acclimatization. Photosynthesis is one of the most important way for plant life and plant production. In the centre of photosynthetic efficiency the quality and quantity traits of photosynthetic pigments are standing. During our work some photosynthetic parameters of plants (in the gap and in the forest as well) were measured: relative chlorophyll content as SPAD index, chlorophyll a and b content, total chlorophyll content and ratio of chlorophyll a and b. Based on our results no significant differences among our data in early spring. Although, during the summer significant differences occurred between the measured values in the gap and in the forest area. Lower total chlorophyll content was experienced in the gap, than in the forest area due to the lower chlorophyll-b content. Because of the high light intensity higher chla/chlb ratio was measured in the gap. The lower chlorophyll contents of gap habitat may have a part of the acclimatization process of photosynthetic apparatus against high light stress, which can determinate the survival chance of individual.

  • The toxic effects of aflatoxin microorganisms in plants used as spices
    59-62
    Views:
    74

    As an extension of the analysis of black, white and capsicum peppers for aflatoxins , we have examined an additional 11 types of spices and
    4 herbs for these mycotoxins. The investigations consisted of assessment of the applicability of available methods of analysis and modifications of
    these, where necessary together, with a limited survey of each spice and herb for aflatoxins. The analysis of 13 types of ground spices reported
    the presence of low concentrations of aflatoxins in some samples of black pepper, celery seed, and nutmeg. We decided to include in our study 5
    of the spices examined by these workers (cinnamon, celery seed, coriander, nutmeg, and turmeric) for a comparison purpose. In addition we
    examined ginger, mace, cumin seed, dill seed, garlic powder, onion powder, and the herbs marjoram, rosemary, thyme, and sage.

  • Nutrient Uptake of Miscanthus in vitro Cultures
    23-24
    Views:
    78

    The large biomass production and the low necessary input fertilizer make Miscanthus an interesting, potential non-food crop with broad applications, e.g. for fuel and energy, for thatching, fiber production, for the paper and car industries, as well as for ethanol production.
    Axillary buds of Miscanthus x giganteus were placed on a shoot inducing nutrient solution (modified Murashige and Skoog, 1962), basic medium supplemented with 0,3 mg l-1 6-Benzylaminopurin. After 40 days of culturing, the axillary buds produced three times more shoots than could normally be harvested. The nutrient content (N, P, K, Ca, Mg) was measured several times during culturing. The results showed that, after 35 days, nitrogen and phosphate were nearly completely taken up. From that time, shoot growth was not observed.
    After shoot propagation, the plants were transfered into a nutrient solution for root formation (modified Murashige and Skoog, 1962), basic medium supplemented with 0,5 mg l-1 Indole- 3-Butyric acid, and could be potted in soil after about 14 days.

  • Spatially Discrete GIS Analysis of Sampling Points Based on Yield and Quality Analysis of Sugar Beet (Beta vulgaris L.)
    32-37
    Views:
    89

    Fulfilment of the increasing quality requirements of sugar beet production can be analysed with sampling of plants and soil at the cultivated area. Analyses of the spatial characteristics of samples require exact geodetic positioning. This is applied in practice using GPS in precision agriculture. The examinations were made in a sample area located in north-western Hungary with sugar beet test plant. According to the traditional sample taking procedure N=60 samples were taken in regular 20 x 20 m grid, where besides the plant micro and macro elements, the sugar industrial quality parameters (Equations 1-2) and the agro-chemical parameters of soils were analysed. Till now, to gain values of mean, weighted mean and standard variance values, geometric analogues used in geography were adapted, which correspond to the mean centre (Equation 3), the spatially weighted mean centre (Equation 4), the standard distance (Equation 5), and the standard distance circle values. Robust spatial statistical values provide abstractions, which can be visually estimated immediately, and applied to analyse several parameters in parallel or in time series (Figure 1). This interpretation technique considers the spatial position of each point to another individually (distance and direction), and the value of the plant and soil parameters. Mapping the sample area in GIS environment, the coordinates of the spatially weighted mean centre values of the measured plant and soil parameters correlated to the mean centre values showed a northwest direction. Exceptions were the total salt and calcium-carbonate contents, and the molybdenum concentration of the soil samples (Table 1). As a new visual analysis, the spatially weighted mean centre values of the parameters as eigenvectors were projected to the mean centre values as origin. To characterize the production yield, the raw and digested sugar contents of the sample area, the absolute rotation angles of the generated vectors were determined, which indicate numerically the inhomogenity of the area (Figure 2). The generated spatial analogues are applicable to characterise visually and quantitatively the spatial positions of sampling points and the measured parameters in a quick way. However, their disadvantage is that they do not provide information on the tightness and direction of the spatial correlation similarly to the original statistical parameters.

  • The effects of drought stress on soybean (Glycine max (L.) Merr.) growth, physiology and quality – Review
    19-24
    Views:
    200

    Abiotic stresses are one of the most limiting factors inhibit plant's growth, leading to a serious production loss. Drought stress is one of the most destructive abiotic stresses and is still increasing year after year resulting in serious yield losses in many regions of the world,
    consequently, affecting world’s food security for the increasing world population. Soybean is an important grain legume. It is one of the five major crops in the world, an essential source of oil, protein, macronutrients and minerals, and it is known as the main source of plant oil and protein. Harvested area of soybean is increasing globally year after year. However, soybean is the highest drought stress sensitive crop, the water deficit influences the physiology, production and seed composition of this crop. We introduce a review for literatures concerning the changes of the above traits of soybean exposed to drought stress, with past explanations for these changes.

  • Investigation of the impacts of the by-product of sewage treatment on some characteristics of maize in the early growth stage
    77-82
    Views:
    52

    The use of sewage sludge on arable land has been widespread for many years. This by-product, treated as waste, can provide valuable nutrients to the soil, but the applied amount of sewage sludge to arable land is limited. The possibility of application of sewage sludge is essentially determined by the composition of the sludge. The goal of the experiment was to demonstrate that the physiological, morphological, and biochemical parameters of maize (Zea mays L. cv. Armagnac) linearly change with increasing concentrations of sewage sludge (25%, 50%, and 75% as m/m%). The experiment was set up in a glasshouse. The following parameters were investigated: plant height, relative chlorophyll content, photosynthetic pigments (chlorophyll-a, chlorophyll-b, carotenoids), and leaf proline and malondialdehyde (MDA) content, and PS II quantum efficiency in the 3-leaf stages of the plants. Sewage sludge applied in lower doses had a beneficial effect on the initial growth of maize. The relative chlorophyll content was significantly higher in all treatments compared to the control. There was no significant difference in the maximum quantum efficiency of PS II reaction centers among the treatments. In this experiment, different concentrations of sewage sludge treatments had different impacts on the MDA and proline content of maize leaves. The proline content was significantly higher in all treatments, while the MDA content did not change significantly compared to the control.

  • The effects of curing technology on the rheological and organoleptic features of meat products
    139-142
    Views:
    87

    Meat products are important staple foodstuffs owing to their high protein, vitamin and mineral content. Meat plants do not only use traditional production technologies but also develop methods that preserve the nutritional value of meat or improve the texture and organoleptic features of meat products. These features play an important role in the consumer society. Consumers first meet the external features of meat and this experience influences their decisions. Our analyses compared a traditional and a new curing procedure. Besides organoleptic inspections, we analysed texture with a CT3 type Texture Analyser to obtain quantified information on the condition of meat samples in the various curing phases. We used our results to compare traditional and new curing procedures.

  • Hungary’s correspondence with the EU regulations regarding liquid bio fuels
    119-128
    Views:
    76

    During the recent years researchers from different countries have found that our environment is at risk. It has been recognised by the leaders of the member countries and they have made decisions together concerning environmental protection in several agreements, contracts. Unfortunately, these decisions have been weakened and adumbrated on numerous occasions by certain interests.
    However, the energetic exploitation of the biomass has been supported by the economic and social changes of the previous years, more specifically, that of the bio fuels. The significant increase in the price of the traditional energy sources, the import dependency of the countries, the foreseeable exhaustion of the resources, the changes occurred due to joining the EU are all such problems that facilitates the application of bio fuels, as a good solution.
    Our country decided to modify the then existed bio fuel component rate of 2% to 5.75% which has to be achieved by 2010. Since then, in March 2007 it has been expanded to 10% until 2020 (concerning energy content). This decision was taken knowing that this year (2006) the bio fuel rate has been 0.5%. However, the rate of 2% has not been achieved even in the EU. One can understand that the implementation cannot be fulfilled without significant political decisions and support. The main reason for this is that the price of bio fuels is not competitive with the present fossil-origin energy prices in Hungary. So in 2007 several regulations were modified. The most important one is perhaps the regulation of the revenue tax, which caused the successful tax-differentiation concerning bio fuels in more member states between 2007 and 2008. Its essence is that the revenue tax is not decreased, but if the fuel does not contain a bio fuel component of 4.4 bulking percentage per litre, „punishment” tax has to be paid. Moreover, on behalf of the implementation, regulations concerning bio fuels and bio fuel components are improving
    At present the production and the application of bio fuels without any support are not economical yet. That is why it is important to emphasize the support policy of our country. After joining the Union, the new members can receive some shares from the direct disbursements, but only a tan increasing rate, we can achieve the 100% in 2013, though there is an opportunity for national contribution. Energy plants produced in agriculture receive separate supplementary support which is an advantageous opportunity for the farmers of the sector. Bio fuels cannot only be supported through agriculture, of course, but by research development, investment etc.
    All in all, it can be concluded that Hungary seeks to fulfil the EU responsibilities taken and by this, to contribute to the maintenance of the sustainable progress, decrease of environmental pollution and the import dependency of energy sources.

  • Comparison of Variability among Irradiated and Control Inbred Maize Lines via Morphological Descriptions and Some Quantitative Features
    70-73
    Views:
    66

    Knowledge of genetic diversity in breeding material is fundamental for hybrid selection programs and for germplasm preservation as well. Research has been done with nine irradiated (fast neutron) and four non-treated inbred lines. The aims of this study were (1) to investigate the degree of genetic variability detected with morphological description (based on CPVO TP/2/2) in these materials, (2) to compare the genetic changes among irradiated and non-irradiated maize inbred lines (based on some quantitative features). The irradiation did not change any of the characteristics clearly in positive or negative way, which can be related to the fact that the effect of induced mutation on genetic structure cannot be controlled. From the irradiated lines we have managed to select plants with earlier ripening times and better phenotypes. We could distinguish 3 main groups by the morphological features; these results match our expectations based on pedigree data. Markers distinguishable on the phenotypic level (e.g. antocyanin colouration, length of tassels) were significant in all lines.

  • Correlation between cultivation methods and quality in some vegetable species
    313-317
    Views:
    124

    Quality parameters of 5 table root varieties were tested on 3 sowing dates with different cultivation methods: open field on 15 April and 9 July 2010 and under plastic tents on 19 August. The highest red pigment content (betanin) was measured in the varieties Akela and Mona Lisa (~ 80 mg 100 g-1) of the second (July) crop. This crop is in general use in Hungary. In comparison, in the late sown varieties (August, under plastics) a further pigment increase (10–20 mg 100 g-1) was observed in the same varieties as related to the earlier sowing dates. Yellow pigments (vulgaxanthins) showed similar trends. Roots of the late sowing date (with harvest in December) contained the highest vulgaxanthin values (103.3–124.18 mg kg-1).
    Varieties reacted differently to temperature changes during the production period and thus to sugar accumulation. In the second crop (July) higher water soluble solids content was measured on the average of varieties (10.12%) in comparison to the April sowing (7.76%). Beetroots of the spring sowing are recommended for fresh market while the second (July) crop with autumn harvest can satisfy industry requirements. Late sowing under unheated plastic tents supply us with fresh beetroot in late autumn and early winter and prolong the usability of plastic tents. 
    Six lettuce species/subspecies were tested in the open field and under plastic tents in 3 repetitions for nitrate nitrogen, vitamin-C, polyphenol (gallus acid equivalent – mg GAE 100 g-1) and mineral element (Ca, K, Mg, Na) contents. Our measurements showed lower nitrate nitrogen values under plastic than in the open field (89.10± 8.13 and 127.06±14.29 mg kg-1) on the average of genotypes. Lettuce grown in the field had higher vitamin-C content (1.4 mg%) which is nearly 50% more than in plants under plastic. The highest polyphenol content was found in samples from the field with a conspicuous value of 804.17±56.47 mg GAE 100 g-1 in Piros cikória. Samples grown under plastic were richer in mineral elements (Ca, K, Mg, Na) which can be explained by the higher nutrient content of the soil. In this environment superior Mg content was observed in Edivia (4616.33±
    311.21 mg kg-1). 

    Besides the well- known headed lettuce, Piros cikória (Red chicory),the red leaved Lollo Rossa and Tölgylevel (Oak leaf lettuce) should be
    mentioned which well deserve further testing in order to supply us with nourishing, healthy food. 

  • The effect of various composts on vegetable green mass on two soil types
    179-183
    Views:
    154

    Composting of sewage sludges makes easier the utilization of sewage sludge in the agriculture and the composts in good quality could increase the nutrient content of soil. Due to the composting process, the sewage sludge composts with high organic matter content can be utilized in the same way as other composts or farmyard manure.
    Composts produced in different ways have different effects on the physical, chemical and biological properties of different soils, although their positive effects have already proved in the literature. In our study the effects of composts from different composting processes were investigated in soil-plant systems. The different physical and chemical properties of the two examined soil types (arenosol and chernozem)strongly influenced the nutrient supply capacity of composts which could be characterized by the growth of ray-grass as a test plant in the pot experiment. In this work we examined the effects of three different composts on the green weight of plants on the fourth and eighth weeks after the treatment and sowing.

  • Comparison of the geranium (Pelargonium) pathological results of 2016-2017
    123-125
    Views:
    122

    The research was carried out in a Gyenes Flower gardening between 2016 and 2017 in Kecskemét. The gardening was founded in 1978. Initially, the main plants were gerbera (Gerbera) and yucca (Yucca), later replaced by the geranium (Pelargonium) cultivation as a result of market demand. In horticulture, there are about than 80 variety geranium of the standing, running, semi-trailer types and English gnawing. The Pelargonium had different sizes and colors. The study was set up in 1,000–1,000 pieces of geraniums each year. The following pathogens have damaged the geranium stock: Botrytis cinerea, Pythium debaryanum, with a rare occurrence of Alternaria porri, Phytophthora cryptogea. The greatest destruction was caused by botrytis (Botrytis cinerea). In the first experimental year, 42% of the 1,000 geraniums tested were infected with fungal diseases (30% B. cinerea, 8% P. debaryanum, 4% other fungi). In 2017, fungal infections were detected on 380 geraniums in the 1,000 tested geraniums (290 Botrytis cinerea, 70 Pythium and 20 other fungal diseases). In addition to the use of fungicides, we increased the spatial position of geraniums, early irrigation and frequent ventilation to ensure successful control. By 2017, we were able to reduce the damage caused by pathogens by 4 percent.