Search

Published After
Published Before

Search Results

  • The special questions of nutrition of forest plants
    83-88
    Views:
    71

    Some physiological effects of bacteria containing fertilizer and some wood ash were examined in the experiments. The minimization of the use of chemicals in agriculture has been an ongoing challenge. One option lies in the intenzification of soil life. The release of organic matters by the roots and bacteria play a significant role in the uptake of minerals. The main problem to usilize wood ash in agriculture is its heavy metal contents. The
    solubility of heavy metals is very low, therefore there is no risk to use the wood ash in the agriculture and in the horticulture according to our experiments. The wood ash and biofertilizer contains several micronutrients in an optimum composition for forestry and agricultural plants.

  • Spent mushroom compost (SMC) – retrieved added value product closing loop in agricultural production
    185-202
    Views:
    1104

    Worldwide edible mushroom production on agro-industrial residues comprises of more than 11 million tons of fresh mushrooms per year. For 1 kg of mushrooms there is 5 kg of spent mushroom compost (SMC). This enormous amount of waste results in disposal problems. However, SMC is a waste product of the mushroom industry, which contains mycelium and high levels of remnant nutrients such as organic substances (N, P, K). The spent mushroom compost is usually intended for utilization, but there are increasing numbers of experiments focusing on its reuse in agricultural and horticultural production. Recently, the increase of the global environmental consciousness and stringent legislation have focused research towards the application of sustainable and circular processes. Innovative and environmentally friendly systems of utilisation of waste streams have increased interest of the scientific community. Circular economy implies that agricultural waste will be the source for retrieving high value-added compounds. The goal of the present work was to carry out a bibliographic review of the different scenarios, regarding the exploitation of this low cost feedstock with huge potential for valorisation.

  • Harnessing diversity in durum wheat (Triticum turgidum L.) to enhance climate resilience and micronutrient concentration through genetic and agronomic biofortification
    9-20
    Views:
    261

    Huge consumption of wheat-driven food products with low bioavailability and small concentrations of zinc is responsible for zinc-induced malnutrition and associated health complications. The contemporary durum wheat varieties have inherently tiny zinc concentrations in developing grain, which cannot meet the daily human zinc demand. Despite the fact that over two billion people are suffering from iron and zinc-induced malnutrition, various intervention measures have been deployed to reverse the effect of zinc-induced malnutrition on humans. There are evidences that agronomic and genetic biofortification approaches can increase grain yield and nutritional quality (i.e. zinc, iron, protein, and vitamins) of durum wheat to a greater extent. However, there is a lack of direct empirical evidence for which the influence of both biofortification approaches on improving human health. Application of micronutrient-containing fertilizers either in the soil or foliarly is effective in combination with NPK, organic fertilizers coupled with efficient durum wheat varieties, emphasizing the need for integrated soil fertility management (ISFM). Although genetic biofortification is a cost-effective and sustainable approach, agronomic biofortification provides an immediate and effective route to enhancing micronutrient concentrations in durum wheat grain. The application of zinc-containing fertilizers is more effective under drought conditions than in normal growing situations. Hence, this article provides a key information for agronomists and breeders about the potential of biofortification interventions to improve durum wheat yield and enrich the grain qualitative traits to ensure food and nutritional security of the ever-increasing world population.

  • Saccharomyces cerevisiae growth kinetics study dairy byproduct
    169-172
    Views:
    252

    By guess, annual volume of milk whey is 185–190 million tons and this volume probably will increase next years. Whey has significant biochemical oxygen demand due to its high organic matter content so whey as sewage is one of the most pollutant by-products in the food industry. Apart from environmental pollution, benefit of several whey constituents for human health is another reason to utilize whey. Corn and potato, as well as the processing of milk in the food industry in large quantities of by-products generated by low cost, substantial quantities of starch and lactic acid, which are due to high biological oxygen demand are considered as hazardous waste. Some of them are destroyed sewage storage tanks, and those products are excellent substrates for the growth of microorganisms could be. The traditional nutrient solution optimization methods are solution and time-consuming and are not able to determine the real optimum because of the interaction of factors involved.

  • The Role and Significance of Soil Analyses in Plant Nutrition and Environmental Protection
    3-8
    Views:
    101

    Hungary has a rich history of soil analyses and soil mapping. Our main tasks today are the preservation of soil fertility as well as balancing the goals of production and environmental protection. The main requirement of agricultural production is to adapt to ecological and economic conditions.
    In a series of consultative meetings in the past seven years, representatives from Central and Eastern Europe have analyzed nutrient management practices in their respective countries. According to a joint memorandum agreed upon in 2000, in the countries awaiting accession, the quantity of nutrients used per hectare is considerably smaller than the Western-European usage targeted through special subsidies. The current low nutrient usage contradicts the principles of sustainability and that of the efficient use of resources, jeopardizing soil fertility.
    In Hungary, the use of inorganic fertilizers underwent a dynamic development, which manifested itself in an almost tenfold usage growth between 1960 and 1985. This growth slowed down somewhat between 1985 and 1990 and then reduced dramatically after 1990, reaching record lows at the usage levels of the 60s. The nutrient supply has had a negative balance for the last 15 years.
    The increasing and then decreasing usage trends can equally be detected in the domestic yield averages of wheat and corn as well as in the nutrient supply of soils. Yields were the largest when usage levels were the highest, and decreased thereafter. Draughts have also contributed to smaller yields. The dramatic decrease in the use of inorganic fertilizers when adequate organic fertilizers are lacking endangers our soils’ fertility.
    About 50% of soils in Hungary are acidic. Acidity is mostly determined by soil formation, but especially on soils with a low buffering capacity, this acidity may intensify due to inorganic fertilizers. Sustainable agriculture requires the chemical improvement of acidic soils. According to their y1 values, the majority of our acidic soils need to be improved. This chemical soil remediation is required in 15% of the acidic soils, while it’s recommended for another 20% of these soils.
    Results of the analyses conducted in the framework of the soil-monitoring system set up in Hungary in 1992 show that in 95% of the analyzed samples, the toxic element content is below the allowable limit. Cultivated areas are not contaminated; toxicity above the legal level was found only in specific high-risk sampling areas: in the vicinity of industry, due to local overload. The basic principle of sustainable agriculture is to preserve soil fertility without undue strain on the environment. The intensity of the production needs to be considered according to the conditions of the site; i.e.; nutrient management needs to be site-specific. It is recommended to differentiate three types of cultivated land in terms of environmental sensitivity: areas with favorable conditions, endangered areas, and protected areas, and then to adopt nutrient management practices accordingly. To meet all the above-mentioned goals is impossible without systematic soil analysis. Tests conducted by the national monitoring system cannot replace regular field measurements.

  • Physiological examination of some industrial wastes under laboratory conditions
    241-246
    Views:
    238

    I would like to draw the attention to the different side-products and wastes that contain lots of organic matter, micro and macro elements, and the fact that they do not have any harmful effect. These materials can be used as micronutrient fertilizers, therefore quantity of the produced CO2 and other greenhouse gases will decrease. Compost, sewage sludge and lime sludge were used in our experiments. The usability of these materials in crop production was examined in crop production within laboratory conditions.

  • Assessing of soil aggregate stability: the sand-correction and its relevance
    29-47
    Views:
    130

    Soil structure and changes in its quality caused by Maize stem (1), Wheat straw (2) and Maize stem & wheat straw (3) addition were assessed by three aggregate-stability indices. We observed that the NSI index formula proposed by Six et al. (2000) was nonsensitive to the changes in soil structure caused by the investigated organic matter addition. Furthermore it overestimates the aggregate-stability of the investigated silty sandy loam soil. Therefore we proposed a new modified NSI formula which is sensitive to the questionable treatments and that resulted in a more
    realistic NSI data. The most sensitive index to differences of the investigated treatments were the Mean weight diameter (MWD) proposed by van Bavel (1953, in Kemper és Rosneau, 1986).

  • Applicability of reflectance to determine compost maturity
    31-35
    Views:
    172

    The utilisation of composts depends on their maturity and stability. A great part of the determination methods can be set in laboratory and needs complicated sample preparation. The aim of this paper was introduce an effective and fast method which based on the different reflectance of the different organic compounds.
    During our research we examined the degradation process of compost prisms based on sewage sludge, wood-clipping and straw with temperature and reflectance measurements.
    As a result, we came to the conclusion that the reflectance, measured at 645 nm or higher, is applicable to determine compost maturity if it is used with temperature measurements.

  • Application of yeasts fortified with microelements – Review
    101-106
    Views:
    159

    Microelements are increasingly becoming into the focus of interest from both a point of view of nutrition science and feeding. An always growing care must be paid to the microelements coverage both in human and animal organisms because of incorrect alimentation habits and
    unsatisfactory feedstuff nutrition value. For the increased supply of the micro-nutrients, enrichment or fortification with microelements can not only be realized with traditional foodstuffs and forage but there are already alternative ways such as single-cell proteins from yeasts directly enriched or fortified with microelements for the purpose.
    We would like to draw the attention that the production of these items is more favourable in comparison with traditional foodstuffs or forage since yeasts are capable to multiply microelement levels compared to their original state, and establish organic bonds with them.
    For this purpose, we explored and analysed the scientific literature, studies and research results on this subject, that is why we stressed the significance of yeasts, the features and health effects of certain microelements, as well as the possibilities for use of yeasts enriched with micro-nutrients.

  • Plant production possibilities on a heavy metal contaminated soil with the purpose of biorefinery
    215-222
    Views:
    133

    Significant part of not cultivated area of Hungary is not suitable for agricultural utilization because of industrial
    pollution. Technologies of biorefinery make reutilization of contaminated areas possible. Biomass of plants
    produced on polluted soils can be raw material of valuable products. Applicability of biorefinery was tested on a
    heavy metal polluted soil, where the contamination originated from previous mining activity. Complete biomass
    utilization was aimed to obtain cosmetic ingredients, pharmaceutical agents, and precursors. During our research
    work 88 plant species and varieties were produced and tested for potential utilizable components. Levels of
    possible contaminants in these plants were monitored, and amounts of carbohydrates, protein, organic acid and
    cellulose were determined as well. Different plant extracts were tested as potential sources of biologically effective
    components or as raw materials for lactic acid fermentation. Our results show that biorefinery is a real possibility
    for utilization of polluted areas. Numerous plants could be cultivated on contaminated areas without increased
    levels of contaminants in their tissues, thus they can be sources of valuable compounds.

  • Environmentally-benign plant protection possibilities against domestic Monilinia spp. in organic apple and stone fruit orchards
    101-105
    Views:
    175

    In this study, possibilities of environmental-friendly plant protection against domestical brwon rot species were summarized for oecological pome and stone fruit orchards. Symtomps of the two most important brown rot species (Monilinia fructigena (Aderh. & Ruhl.) Honey and Monilinia laxa (Aderh. & Ruhl.) Honey) were described and then cultivar susceptibility to brown rot was discussed. Furthermore, mechanical, agrotecnical, biological, and other control possibilities (stone powders, plant extracts and restricted chemical materials) were shown.

  • Optimized balance between crop productivity, restoration and maintenance of vital soil functions and soil carbon sequestration and storage – the SmartSOIL (FP7) project
    213-215
    Views:
    136

    Soils provide the most indispensable function of supporting the production of food and feed for a growing human population. At the same time they provide a range of regulating and supporting functions related to climate change and removal of greenhouse gases. The majority of the soil functions are closely linked to the flows and stocks of soil organic carbon (SOC); low levels of both flows and stocks may seriously interfere with several of the essential soil functions and thus affect the ecosystem services that soils deliver. Soil degradation is considered a serious problem in Europe and a large part of the degradation is caused by intensive cultivation practices in agriculture. The aim of the SmartSOIL project is to link the results of different scientific fields through a holistic and multidisciplinary approach and as a result develop a decision making tool contributing to sustainable development.

  • Comparative examination of a bacterium preparation (BACTOFIL® A10) and an artificial fertilizer [CA(NO3)2] on calcareous chernozem soil
    75-80
    Views:
    139

    In a small-pot experiment a bacterium preparation, Bactofil® A10 and an artificial fertilizer containing Ca(NO3)2 in different dosages were studied on calcareous chernozem soil, concerning the readily available nutrient content of soil (nitrate-nitrogen, AL-phosphorus, ALpotassium content of soil, some soil microbial characteristics (total number of bacteria and fungi, cellulose-decomposing and nitrifying bacteria, CO2-production of soil), and the amount of the plant biomass.
    The readily available nutrient content of the calcareous chernozem soil increased due to the treatments, except for the change in the soil nitrate-nitrogen content, which did not measure up to the control due to the effect of high-dosage Bactofil.
    The treatments also influenced the examined microbial characteristics of the soil positively. The artificial treatments significantly increased the total number of bacteria and the number of cellulose-decomposing and nitrifying bacteria. The low-dosage Bactofil significantly increased the number of cellulose-decomposing bacteria and both Bactofil dosage significantly increased the number of nitrifying bacteria. The measure of the soil respiration grew in all treatments, but significantly only in Ca(NO3)2 fertiliser treatments.
    The quantity of the plant biomass was grew in a low-dosage Bactofil and significantly in the artificial fertiliser treatments. The highest plant biomass quantity was measured in the high-dosage artificial fertiliser treatment.
    In the correlation analyses we found some medium positive correlation between the soil chemical, microbiological parameters examined, and the plant biomass in the case of both treatment-forms. 
    Based on our results Ca(NO3)2 artificial fertiliser treatments on calcareous chernozem soil proved to be more stimulating regarding the
    examined soil characteristics and the amount of the plant biomass, but the low-dosage Bactofil also positively influenced the majority of the
    soil characteristics examined in terms of nutrient supply.

  • Significance of biogas production in Hungary
    127-129
    Views:
    143

    It is known that the quantity of fossil energy sources are rapidly reducing, therefore it is necessary to determine a new direction which has to point directly to renewable energy sources. Increasingly comes into view the agriculture’s energy producing nature next to it’s traditional food producing one. The enviromental protection is connected to the energy production by the ultilization of biomass for energy purposes, within the biogas production has an emphasized importance. Quasi every organic material can be used in biogas production, such as: food processing by-products, manure, sewage sludge, hoousehold waste.

  • Effect of fertilization on the potentially mineralize N forms of soil of long term field experiment was set in an acidic sandy soil
    20-24
    Views:
    200

    The aim of this paper was to provide further information about the nitrogen mineralization processes of soil. A modified incubation technique was applied to establish the amount of easily soluble mineral and organic N forms during the incubation period. An acidic sandy soil was used for incubation, which was sampled from the „Westsik” long-term field experiment. The incubation was carried out on fifteen selected soil samples which were received different treatments since the experiment was set up. 
    From the obtained results, the amount of potentially mineralizable N and the mineralization rate constant were determined. Results of chemical analysis and biological interpretation of results are discussed.

  • Cluster, a potential tool for rural development
    195-201
    Views:
    177

    There was a heavy change in the characteristics of the agriculture in the last 20 years. It become a multifunctional, sustainable, organic system, which needs strategic approach. On the problem map of the hungarian agriculture the most importatnt questions are the following: dual charachter of the land structure, to occidentalize the farm structure. To develop the rural areas we need to real markets needs adapted, competitive, local agricultural production. From the ’90s into Europe’s economic development policies integrated the clusters, this research tries to certify, that this system is viable in classic agriculture and able to dissolve the defecinces, to support the aims of rural development.

  • Stress Response of four Common Carp (Cyprinus carpio L.) Varieties with Different Genetic Background
    26-29
    Views:
    84

    Four different carp varieties were tested for stress reaction, with the help of 10 °C cooling and 100 g/l crowding. The selected varieties represented a broad genetic spectrum of carp species. The stress was monitored by measuring plasma cortisol, glucose and lysozim levels. In each test different varieties showed significantly different reaction to stress. This means that they differ in the trait of general resistance. Thus, this trait can be used in selection programmes and the acquired information helps to understand fish-environment interaction and specific resistance. These traits should be used in selection to improve the breeding of new more tolerant species for intensive farming or for organic production.

  • Examination of the possible role of biofertilizers and wood ash in the nutrient supply of plants
    87-95
    Views:
    100

    Some physiological effects of bacteria containing fertilizer and some wood ash were examined in the experiments. The minimization of the use of chemicals in agriculture has been an ongoing challenge. One option lies in the intenzification of soil life. The release of organic matters by the roots and bacteria play a significant role in the uptake of minerals. The main problem to usilize wood ash in agriculture is its heavy metal contents. The solubility of heavy metals is very low, therefore there is no risk to use the wood ash in the agriculture and in the horticulture according to our experiments. The wood ash and biofertilizer contains several micronutrients in an optimum composition for forestry and agricultural plants.

  • Stripe rust reaction and yield response of winter cereals in bio - versus conventional farming
    47-50
    Views:
    140

    In 2014, was an extremely early and heavy yellow rust (Puccinia striiformis var. striiformis) epidemic in Hungary. Significant differences were among locations, years and genotypes in the severity of infection. Ratio of the resistant and moderately resistant genotypes was higher under bio environment. The yellow rust epidemic caused significant yield decreasing in the tested winter cereals.

  • Studies of the influences of different N fertilizers and Microbion UNC bacterial fertilizer on the nutrient content of soil
    134-140
    Views:
    109

    A field experiment was conducted to examine the effects of different nitrogen fertilizers in combination with bacterial fertilizer on
    nutrient uptake of horseradish and plant available nutrients of the soil. Three different N fertilizers, ammonium-nitrate, urea and calciumnitrate
    (116 kg ha-1 N) in combination with Microbion UNC bacterial fertilizer (2 kg ha-1) were applied as treatments in a randomized
    complete block design in three replications. In this paper we presented the results of soil measurements. The soil of the experimental area
    was chernozem with medium sufficiency level of N and P and poor level of K.
    Our main results:
    The amount of 0.01M CaCl2 soluble inorganic nitrogen fractions, NO3
    --N and NH4
    +-N and also the quantity of soluble organic-N were
    almost the same in the soil. N fertilizers significantly increased all the soluble N fractions. The amount of NO3
    --N increased to the greatest
    extent and the increase of organic N was the slightest. We measured the largest CaCl2 soluble NO3
    - -N and total-N contents in the plots
    treated with ammonium-nitrate, the largest NH4
    +-N in the plots treated with calcium-nitrate and the largest organic-N fraction in plots
    treated with urea.
    Bacterial inoculation also increased both soluble inorganic nitrogen forms and also total-N content of soil compared to the control. In
    the case of combined (artificial and bacterial fertilizer) treatments we measured lower NO3
    --N, organic-N and total-N compared to the
    values of plots having only nitrogen fertilizer treatments. On the contrary in the plots with combined treatments the CaCl2 soluble NH4
    +-N
    content of soil in more cases were higher than that of values with artificial fertilizer treatment.
    As a function of calcium-nitrate application increased AL-P2O5 and AL-K2O values were measured compared to control. Microbion
    UNC supplement of calcium nitrate yielded also increase in AL-P2O5 and AL-K2O values, till then supplement of ammonium-nitrate fertilizer
    yielded a decrease in these values compared to the control.
    All nitrogen fertilizers resulted in a significant decrease in AL-Mg content of soil compared to the control. Nevertheless bacterial
    fertilizer increased AL-Mg values in any cases.

  • The effect of crop coverage on the daily dynamism of the soil’s CO2 emission
    97-102
    Views:
    161

    Nowadays one of main goals of international ecosystem research the measurement of greenhouse gases (CO2, N2O and CH4) in different places. The fluctuation of these greenhouse gases – quantity and trend in the case of CO2 and CH4 – could be diverse with atmosphere because it depends on several effects of factors like climate, soil type, vegetation. In grassland out of the three greenhouse gases which fill a part in gas emission, in the case of CO2 soil and vegetation are the most important factors (Soussana et al., 2007).
    In the aspect of global carbon balance grasslands are very important by their large area extension, total carbon content, organic content store (10% of the global carbon storage) (Lemmens et al., 2006). In this summer measurements were carried out to determine CO2 emission of the soil from different soil surfaces like grass covered and bare soil surface during a whole day.

  • Experiment of quality properties of dehydrated fruits
    7-15
    Views:
    121

    The lyophilization is the joint application of freezing and drying. It is an up-to-date conserving procedure, the point of which is that the humidity existing in the frozen humid material is transferred from the solid state directly into the gaseous state at a temperature below 0 oC under vacuum. Out of the procedures applied nowadays, this is the most tolerant drying process.
    With regard to the high investment and operational costs, freeze drying is applied only for valuable, heat-sensitive materials when the technological aim is to preserve such properties as aroma, taste and colour as well as such components as proteins and vitamins. This procedure is suitable for drying and conserving certain foodstuffs, stimulants, organic chemicals, medicines and similar sensitive and valuable materials.
    In our institute, we have been conducting freeze drying experiments with regional fruits and vegetables since the year 2005. During the first phase, we examined the heat- and material transfer as well as the abstraction of humidity, while during the second phase we analysed the rehydration ability and nutrient content of the freeze-dried materials as compared to those dried with the method of convection. Moreover we have conducted penetration measurements with a portable hardness tester.
    To sum up the results gained so far, we can state that the quality of the lyophilized materials is better than those dried in the traditional way. It originates partly in the fact that the temperature and pressure applied for the freeze drying are smaller and the drying period is far longer than for the convection drying.
    In contrast to convection-dried materials, freeze dried materials set in close to their original water-content, keep their original shape and size after being rehydrated. The reason of it the porous, spongy structure (flexible cell wall) of the lyophilized products which is able to take up moisture quickly. In addition, the lyophilized products can be rehydrated faster than those dried in the traditional way.
    Regarding the results of the chemical analyses, the following conclusion can be drawn: the vacuum freeze drying results a small decrease of nutrient content and nutritive value for the lyophilized products.
    The results of the hardness tests support the statement that the majority of agricultural materials cannot be considered as an ideal flexible body, because during the experiment the flexibility coefficient changed when going from the surface of the material inwards. In addition, the penetration tests also confirm that the surface of the convection-dried vegetables is at least 1.5-3 times harder than that of the freeze-dried products. The reason of it that it takes place during the drying denaturation processes.
    The article summarizes the results of our research work listed above, in accordance with our experiments conducted by using the characteristic fruits (apple, plum) of the Nyírség Region.

  • Different soil fertility conditions depending on different land use methods
    169-172
    Views:
    103

    In precision nutrient management the most important aspect is adaptation but we should consider the possibility of the long-term improvement of soil fertility within the less fertile landscape zones.  This possibility can be evaluated principally by long-term field experiments, which are running on similar soil types. The results of these field experiments can indicate that which soil fertility status should be attained. Some more important soil fertility data, (such as pH, P-, K- and soil organic matter (SOM) content) of a long-term field  experiment with increasing farmyard manure(FYM) doses or equivalent NPK fertilizers, set up on an Eutric cambisol, are presented. The yieldincreasing capacity of FYM doses was only 82%, as compared to the equivalent amount of mineral NPK, but long-term FYM treatments resulted in 10% higher SOM content than that of equivalent NPK
    fertilizer doses. The studies indicate that SOM content is a function of local climate and clay content of the soil, and neither long-term high FYM doses can increase SOM content steadily above a supposed steady-state value. However we have to make efforts to keep the optimum level. The lowest soil reactions developed both with the highest NPK doses and without any fertilization. AL-P2O5 content of soil was increased more by mineral fertilization than by FYM treatments, but in case of AL-K2O content there was no difference between the fertilization variants. However the highest doses of both fertilization  variants increased soil nutrient content to an excessive degree. Wecould get very valuable data from the unfertilized control plots as well, where long-term yield data suppose 48 kg ha-1 year-1 air-borne N-input.

  • Effects of fermented chicken manure products on the N mineralization rate of the soil using the incubation method
    199-204
    Views:
    211

    In our study, the effect of fermented and specially added poultry manure products (superabsorbent polymer (SAP), bentonite and Aegis as a mycorrhizal inoculum) were investigated in a short soil incubation experiment – at 60% water capacity level - on sandy soil. Soil samples were collected from two layers of the incubation pots after the second and fourth week to check the status of the tested products and the processes in the soil. The pH and the electric conductivity (EC) of the samples were measured using an electrochemical method, while the ammonium and nitrate content of the samples was determined with a photometric method. Soil pH and EC values slightly were decreased during the experiment. Our results pointed out that the increasing dose of SAP caused lower soil pH. The nitrate content of the soil did not change significantly during the experiment. It was found that the increasing SAP content in the products, due to its cross-linked structural property, protected the nitrate ions from leaching. Our results suggest that applied SAP does not bind the nutrient ions so tightly in its structure that it competes with the plant for uptake.

  • Mitigation of the effect of secondary salinization by micro soil conditioning
    115-119
    Views:
    236

    This research has the general goal to meet the customization of agriculture in small scale farming. We are developing a technique using micro doses of soil conditioners and organic material applied in the root zone of vegetable crops. We expected to change the physical and chemical properties of the affected soil, which has been irrigated with salty water. Two different soil conditioners were tested. A lysimeter experiment including 8 simple drainage lysimeters was set up in the Research Institute of Karcag IAREF University of Debrecen in 2017. The main goal was to study the effect of different soil conditioners on the soil endangered by secondary salinization induced by irrigation with saline water. In order to compare the difference between the treatments, we collected soil samples, water samples, and determined the yields. Chili pepper (Capsicum annuum) was used as an indicator crop during one specific agricultural season. The technique called micro soil conditioning is rational because several reasons. The roles of the technique are various, for example it can serve as a source of carbon or a container for soil amendments and can minimize evaporation. We found this technique not to interfere with the chemical reaction or the interaction with the plants. However, the micro doses of soil amendments had the role to minimize the risk of soil degradation and do not significantly influence soil respiration. In addition, by improving soil properties, soil conditioning increases the leaching of the excess of salts from the root zone. In fact, this technique can decrease the cost of the inputs and improves the production of vegetables, and at the same time mitigates the effect of secondary salinization.