Search

Published After
Published Before

Search Results

  • The Effect of Sowing Time and Nutrient Supply on the Yield Stability of Maize
    75-80
    Views:
    114

    Sowing time, nutrient supply and plant number play crucial roles in the yield stability of maize. The productivity of various hybrids, each with its own genetic characteristics, was tested for three different sowing times and five different fertilizer doses. The highest yields were achieved at the third sowing time (17. V.), which is unusual, because the second half of the summer was rainy and was favourable for late sowing. The seed moisture content at harvest was higher than the optimal 14-15% at the third sowing time, the hybrids, which have intensive bleeding dynamics, couldn’t reach the lower seed moisture content at harvest of the early sowing. In that case we have to decision whether the plus yield of the third sowing time cover the drying costs.
    Some hybrids produced the highest yields by N 120, P2O5 75, K2O 90 kg/ha active agent but the higher fertilizer doses depress the yield. The other part of the hybrids were able to produce high yield by bigger fertilizer doses. On the whole the agro-ecological optimum of the NPK fertilization was N 120-160, P 25-100, K 90-120 kg/ha active agent, but the N 80, P2O5 50, K2O 60 kg/ha fertilizer doses was the most effective.

  • Determining factors of test weight in maize (Zea mays L.)
    40-42
    Views:
    92

    Most domestic maize production products are sold on markets abroad. Among the increasingly restrictive quality requirements, the demand for the measurement of test weight has also appeared. This measurement is not unfamiliar in the case of other cereals, such as wheat and barley, but it has not been applied widely in maize. It is likely for this reason that we have such little information and research available on this topic. In this study, we show the current state of this field with references from domestic and international literature.
    The density of maize is the weight of a particular volume and the most frequent unit is the test weight (kg/hl). This physical quality factor plays important roles in the storage, transport and mill industries. The value of test weight is influenced by many factors. The most important ones are the moisture content of grains, drying temperature, drought, precipitation, early frost, and the hybrid characters of a given genotype (grain type, FAO number). In general, the grain with higher moisture content has lower test weight and the higher temperature during (above 82°C) desiccation also leads to unfavourable values. Factors such as a drought interval after flowering, early frost in the case of hybrids with higher FAO numbers, injuries by insects, as well as fungal infections also influence the structure and moisture content of the maize grain.
    In the future, broader studies (hybrid testing, application of new agrotechnical elements) will be needed for understanding of the factors effecting test weight.

  • Examination of the physical state of the soil under conventional and reduced tillage systems
    183-186
    Views:
    149

    he effect of reduced and conventional tillage systems on soil compaction and moisture content in two years with extreme weather conditions is introduced in this paper. The investigations were carried out in a long-term soil cultivation experiment set on a heavy textured meadow chernozem soil at the Karcag Research Institute. In 2010 the amount of precipitation during the vegetation period of winter wheat was 623.3 mm, 2.2 times higher than the 50-year average, while in 2011 this value was 188.7 mm giving only 65% of the average. The examinations were made after harvest on stubbles on 4 test plots in 5 replications in the case of each tillage system. Soil compaction was characterised by penetration resistance values, while the actual soil moisture contents were determined by gravimetry. The values of penetration resistance and soil moisture content of the cultivated soil layer were better in the case of reduced tillage under extreme precipitation conditions. It could be established that regular application of deep soil loosening is essential due to the formation of the unfavourable compact soil layer under 30 cm. Conventional tillage resulted in enhanced compaction under the depth of ploughing, the penetration resistance can reach the value of 4 MPa under wet, while even 8 MPa under dry soil status.

  • Variations in major quality parameters of forage and medium quality winter wheat varieties in storage
    249-254
    Views:
    92

    We analysed five parameters (moisture-, protein content, Hagberg’s falling number, wet gluten content and alveographic W (10-4 J) values) and the microbiological changes of four forage and milling III. quality winter wheat varieties (Magor, Hunor, Róna and Kondor) during storage, to determine the tendency, type and volume of the of the change of this five qualitative parameters during storage.
    We found that the examined winter wheat varieties retained their moisture, protein content and their Hagberg’s falling number, they did not change during storage.
    A slight growth could be experienced in the values of wet gluten content for all the four winter wheat varieties in terms of the duration of storage (129 days). This result proved the theory of after-ripening, when gluten percentage improves qualitatively and quantitatively as well. The value of the quantitative growth was about 10% for all the four winter wheat varieties.
    We placed a special emphasis on measuring the alveographic W (10-4 J) values during storage. All the four winter wheat varieties showed decreasing values of about 20-40%.
    Microbiological examinations on the four winter wheat varieties showed that mould, mould flora and total germ count remained balanced with some slight variations and they did not change in terms of time under optimal storage conditions.

  • Impact assesment of soil conditioners on a high clay content soil
    137-141
    Views:
    137

    Our measurements were done in a soil conditioner experiment started in 2014 which was set in conventional tillage system at the Karcag Research Institute where a soil conditioner was used from 2010. Effect of two different soil conditioners on compaction, moisture content of the soil and on CO2-emission was studied. Measurements were done after sowing of maize and millet, and on stubble after harvesting. It can be established that less degree of compaction was characteristic to the soil of the plots treated for several years with the soil conditioner during the vegetation period than in case of untreated plots. Higher CO2-emission values were observed on the plots treated for several years than on the control plots. This effect can’t be established in case of soil conditioners used for first time in this year.

  • Storage of wheat at high moisture
    111-114
    Views:
    74

    Deterioration rates were determined for 15-19% moisture content wheat (Dropia cultivar) stored at constant temperatures.
    Deterioration rates were determined by measuring germination capacity of the grain and respiration rates of grain. Safe storage
    time was defined as the time for germination to decrease to 90%. Safe storage times of 19% m.c. wheat stored at constant
    temperatures ranged from 2.5 d at 30 and 35°C to 37 d at 10°C. Deterioration rates of 19% m.c. wheat stored with a step decrease
    in storage temperatures (35-25, 30-20, 25-20, and 20-15°C) were determined and safe storage times were satisfactorily predicted.
    Safe storage times of 17% m.c. wheat were 5, 7, and 15 d at 35, 30, and 25°C, respectively. Respiration rates and germination
    percentages of 15 and 16% m.c. wheat stored at 25°C remained constant for 70 d. The respiration rates of 17-19% m.c. wheat at
    25°C increased while the germination percentages decreased with storage time. Germination dropped from 98 to 92-89% when the
    dry matter losses were about 0.05% and visible mould occurred when the dry matter losses were about 0.1% in 17-19% m.c.
    wheat.

  • Comparative study of special honey products and herbhoneys
    117-120
    Views:
    320
    Honey has a positive effect on human body due to its high content of biologically active substances (e.g. monosaccharides, vitamins, enzymes, amino acids, polyphenolic compounds). The properties of honey depend on its botanical origin due to the bioactive plant components, mainly secondary metabolites that are included in honey made by bees from nectar. Herbally infused honeys are delicious products that combine the therapeutic action of herbs and honey. Additionally, herbs can provide nutrient fortified syrup for honey bees and protect them against diseases and other ecological threats.
    The aim of this study was to define the physicochemical properties of multifloral honey, herb enriched natural honey and herbhoney samples. We measured the moisture content, pH value, electrical conductivity and proline content. Although great diversity was observed in the basic properties of the examined products. In our study, we found that the electrical conductivity shows the significant differ between the groups. All the samples, including the herbhoneys passes the quality standards of honeys.
  • Microbiological preparations affecting the soil nutrient availability and growth of ryegrass in a pot experiment
    49-53
    Views:
    136

    The effects of different bacterial fertilizers and their combinations with NPK fertilizer and wheat straw were investigated on some soil properties (chemical parameters) and on the biomass production of testplant. The applied quantities of the bacterial fertilizers were the double of the recommended dose. The experiment was set up in 2013 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. Calcareous chernozem soil; originating from Debrecen (Látókép) was used with ryegrass (Lolium perenne L.) test plant. At the end of the experiment (after 8 week) the samples of soil and plants were determined for nitrate-nitrogen, ALsoluble phosphorus and potassium content of soil, the weight of green biomass of ryegrass per pot, the dry matter and moisture content of ryegrass. Straw treatment resulted better water and available nutrient content of soil in general. Inoculation however was not improving the biomass production over the fertilizer treatment. Interrelation with the recommended dose could be further studied.

  • Physical and chemical treatment of poultry feather from the slaughter-house
    51-56
    Views:
    65

    The 15-20% of the by-products of meat – and poultry industry – that unsuitable for human consumption – contains keratin. The slaughter technology of poultry produces large amount of poultry feather with 50-70% moisture content. This means more million tons annually worldwide (Williams et al., 1991; Hegedűs et al., 1998). The keratin content of feather can be difficulty digested, so physical, chemical and/or biological pretreatment is needed in practice, which has to be set according to the utilization method.
    Our applied treatments were based on biogas production, which is a possible utilization method. In the IFA (TULLN) Environmental Biotechnology Institute the feather was homogenized, and – according to the previous examinations – the most effective 1:2 feather-distilled water ratio or 1% NaOH-solution was used, and then treated with microwave (70, 130, 160 °C) during 1 hour time period. DM% and oDM% content was analyzed in the original samples, and the pH, Carbon-, Nitrogen-content in the output, too. Based on the received correlation coefficients (R) and related significance values (Sig.) I concluded, that the C-, N-content and the pH values weren’t influenced by any of the additives. The temperature
    affected all three tested factors. The temperature showed a strong coherency with the N-content and the pH value when distilled water was used and weak-medium coherency with the Carboncontent. With NaOH-solution treatment the temperature gave strong coherency with the C- and N-content, as well as medium coherency with the pH. Our objective was to determine the method with effectively the pre-treating of poultry feather for biogas production or composting and to prepare of the treated samples for N and C analyzing. Our next aims will be the elaboration of the technological parameters of heat pre-treatment and microbial digestion of poultry feather for biogas production. 

  • Relationship between the change of soil moisture content of different soil layers and maize yield
    19-25
    Views:
    151

    The development of chernozem soil water management and its relationship with maize yields was studied in a 30-years long-term field experiment with different crop-rotation systems (mono-, bi- and triculture), in three crop years with different natural precipitation: a drought (2007), a wet (2008) and a dry (2009 one. The relevant soil layer was divided to three sub-layers: (0–60 cm, 61–120 cm, 121–200 cm) in which the development of soil moisture content was investigated during the whole vegetation. From the results it can be stated that change of the water stock of the upper soil layer (0–60 cm) was the most intensive. Both the direct effect of natural precipitation and irrigation could be observed in the most obvious way in it. Yield result of maize and the highest water supply deficit values in the vegetation were compared in our work too. According to the results it was revealed that among the three studied crop rotation systems it was the monoculture, the success of production of which depends the most of water supply. The most favourable crop rotation system was the triculture from both the aspect of the yield of produced crops and the favourable soil properties too.

  • The Effect of Soil Coverings on Soil Respiration in Sandy Soil
    21-25
    Views:
    121

    The purpose of our experiments is to study effect of different soil coverings (porous black polyethylene called agroszövet and black polyethylene) on CO2 production in sandy soil. The CO2 production was measured in our laboratory according to Witkamp (1966 cit. Szegi, 1979), after 5 days’ incubation period. Samples were taken off four times (March, May, July, September) in every year of the experiment. In May, July and September of 2000, the CO2 production was significantly higher in the control than in the treatment soil. With the exception of September, the value of CO2 production was significantly higher under black polyethylene than under agroszövet. In March and May of 2001, the soil under black polyethylene, and in July and September the control soil produced the greatest quantity of CO2. With the exception of July, significantly more CO2 was produced under black polyethylene than under agroszövet. To study the dynamic of CO2 production there was find a significantly higher value May and September of 2001 than 2000. Similarly significant higher CO2 production was detected in September than in the other months In average of two experimental years the difference between the produced CO2 under different coverings was occasionally. Explicit upward tendency in soil CO2 production was detected only in case of control soil. There was a medium (r=0,413) relationship observed between the moisture content and the CO2 producing ability of soil. To sum up the soil coverings had favourable effect on soil CO2 production very rearly, but they could help to conserve the moisture content of soil.

  • Investigation of soils of stubbles of winter wheat and winter peas in conventional and reduced tillage systems
    95-99
    Views:
    187

    The effect of reduced and conventional tillage on soil compaction, soil moisture status and carbon-dioxide emission of the soil was studied on a meadow chernozem soil with high clay content in the soil cultivation experiment started in 1997 at Karcag Research Institute. Our investigations were done on stubbles after the harvest of winter wheat and winter peas after the very droughty vegetation period of 2014/2015.

    We established that the soil in both tillage systems was dry and compacted and the CO2-emission was very low. The positive effects of reduced tillage could be figured out only in the soil layer of 40–60 cm in the given weather conditions of that period.

  • Effect of Planting Time of Maize on Factors Influencing Yields in 2001-2002
    112-116
    Views:
    77

    In this paper we analysed the results of maize planting time experiments by the Department of Crop Sciences and Applied Ecology of the University of Debrecen, Centre of Agricultural Sciences in 2001. We made the experiments at the experimental garden of DE ATC in Hajdúböszörmény.
    We examined in 2001, 2002 ten hybrids with three planting times. The results were analysed by analysis of variance with two factors. In 2001 the yields were high, between 7.2-11.6 t/ha. The seed moisture contant of hybrids was 6-8% less after early planting than after late planting. The vegetation period of the hybrids became longer after early planting, which helped the drying-down of the hybrid and determined the seed moisture content at harvest to a great extent.
    In 2002 the yields were high, between 4.02-10.47 t/ha. The seed moisture contant of hybrids was 5-14% less after early planting than after late planting.
    On the basis of the above, variety specific technologies should be applied where the planting time is adapted to the hybrids. In accordance with the other cultivation factors.

  • Effect of sufficient and deficit irrigation with different salt inputs on the yield of cucumber
    19-25
    Views:
    53

    Soil salinisation is considered one of the major environmental hazards threatening agricultural productivity and can be accentuated by climate change as well as the use of low-quality water in irrigation. This is the case in our study area which is affected by secondary salinisation due to the use of saline irrigation water for horticultural production. Deficit irrigation technique is implemented especially in arid and semiarid regions due to its potential to optimise water productivity while maintaining or increasing crop yield. The main objective of this study was to compare the effect of irrigation with sufficient (SD) and deficit (DD) doses. This research was carried out in Karcag in 2020. Cucumber was grown on a meadow chernozem soil and was irrigated with SD and DD of two irrigation water qualities. Soil moisture was monitored and crop yields were recorded. Despite the differences in quality and quantity of water, the application of less water by DD maintained the same yield as SD. We found a non-significant difference between the average soil moisture contents under the treatments (15.5 v/v% for SD and 13.5 v/v% for DD). Deficit irrigation can be an efficient technique due to its potential for improving water use efficiency, maintaining sufficient soil moisture content favourable for proper crop development and yield.

  • Comparison of quality parameters of producers' and commercial honeys
    31-39
    Views:
    154

    Honey is our essential food since ancient times. In Hungary about 25 000 tons of honey are produced each year, and most of the product (80%) is exported. Hungarian honeys have excellent quality but because of scandals of honey adulteration the interest and recognition may decrease. Therefore we must elaborate a method with which the establishment of adulteration is simple and cheap. In this study we concentrate on simple quality parameters which inspection is not elaborate. These parameters for example sugar- and moisture contains, proline content, electrical
    conductivity, element content, pH, HMF content, degree of acidity. We examined these parameters in producers’ and commercial samples. We succeed fund parameters which characteristic of one type of honey thus we have possibility identify of honey type. For example the proline content was very low in the producers’ linden honey (mean 126 mg/kg). This value is lower than the regulation, but in case of commercial linden honey this parameter is higher than regulation. According to electrical conductivity and Potassium content is provable the type of linden honey.

  • Long-term effect of soil management on the carbon-dioxide emission of the soil
    515-527
    Views:
    81

    CO2 emission from soils is one of the most important elements of the global carbon cycle, thus it has crucial rule in climate change. Each soil cultivation operation intervenes in the microbiological life of the soil, hence tillage is a factor through that the processes taking place in soil can be controlled. During the last decades, the organic material content of agricultural soils decreased to the half due to the intensive management resulting in the degradation of natural soil fertility. While intensive, plough-based tillage can cause soil degradation and erosion, the physical, chemical and biological status of the soil can be significantly improved through the application of conservation tillage methods. The results of long-term experiments prove that soil protective tillage enhances the  enrichment of organic matter in the top layer of the soil. In order to reveal the role of tillage systems in CO2 emission from the soil,  regular measurements were carried out in the plots with conventional and reduced tillage of the soil cultivation experiment of Research Institute of Karcag. Anagas CD 98 and Gas Alert Micro 5w infrared gas analysers were used to measure CO2-concentrations, and a specially developed method (consisting of a frame and a bowl) was applied to delimitate the measuring area. Most of the  measurements were done on stubbles after harvest in order to exclude root respiration. The weather conditions of the examined 10 years were very changeable providing a good chance to compare them to each other. We found the tillage operations resulting in  higher emission values in both tillage systems. On stubbles higher and more even emission was characteristic to reduced tillage due to the lower degree of soil disturbance and higher soil moisture content.

  • Risk effects of the spread route of mycotoxins
    90-95
    Views:
    89

    In Hungary the mycotoxin is a great problem, because there are many natural toxins in wheat and maize. These cereals can be found on
    considerable proportion of the country’s sowing area, and they are deterministic food for the population. The direct human and animal
    utilization of the contaminated cereals mean a serious risk in the food chain. In Hungary’s climate the soil is contaminated with pathogen
    moulds, particularly Fusarium species, which increase by respective temperature and moisture content in cereals. The Fusarium can
    decrease the quality of the wheat in different ways: decrease the germination capability and cause visible discoloration and appearance of
    mould, reduces the dry material and nutrient content of the grain. From the toxins produced by the Fusarium genus, the trichotecene (T-2,
    HT-2, deoxinivalenol, nivalenol, diacetoxyscxirpenol, Fusarenon-X) and the estrogenic zearalenon (F-2) are the most common in Hungary.
    The fumonisins (FB1, FB2, FB3) first identified in 1988, relatively newly discovered, are also important. Major proportion of mycotoxins in a
    healthy organization is metabolized by the enzyme system of liver and intestinal bacteria. The toxicity is reduced or even leaves off.
    However, more toxic and biologically active compounds can be formed. For the reduction of mycotoxin-contamination several possibilities
    are available in the case of storage, processing and feeding.

  • Experiment of quality properties of dehydrated fruits
    7-15
    Views:
    100

    The lyophilization is the joint application of freezing and drying. It is an up-to-date conserving procedure, the point of which is that the humidity existing in the frozen humid material is transferred from the solid state directly into the gaseous state at a temperature below 0 oC under vacuum. Out of the procedures applied nowadays, this is the most tolerant drying process.
    With regard to the high investment and operational costs, freeze drying is applied only for valuable, heat-sensitive materials when the technological aim is to preserve such properties as aroma, taste and colour as well as such components as proteins and vitamins. This procedure is suitable for drying and conserving certain foodstuffs, stimulants, organic chemicals, medicines and similar sensitive and valuable materials.
    In our institute, we have been conducting freeze drying experiments with regional fruits and vegetables since the year 2005. During the first phase, we examined the heat- and material transfer as well as the abstraction of humidity, while during the second phase we analysed the rehydration ability and nutrient content of the freeze-dried materials as compared to those dried with the method of convection. Moreover we have conducted penetration measurements with a portable hardness tester.
    To sum up the results gained so far, we can state that the quality of the lyophilized materials is better than those dried in the traditional way. It originates partly in the fact that the temperature and pressure applied for the freeze drying are smaller and the drying period is far longer than for the convection drying.
    In contrast to convection-dried materials, freeze dried materials set in close to their original water-content, keep their original shape and size after being rehydrated. The reason of it the porous, spongy structure (flexible cell wall) of the lyophilized products which is able to take up moisture quickly. In addition, the lyophilized products can be rehydrated faster than those dried in the traditional way.
    Regarding the results of the chemical analyses, the following conclusion can be drawn: the vacuum freeze drying results a small decrease of nutrient content and nutritive value for the lyophilized products.
    The results of the hardness tests support the statement that the majority of agricultural materials cannot be considered as an ideal flexible body, because during the experiment the flexibility coefficient changed when going from the surface of the material inwards. In addition, the penetration tests also confirm that the surface of the convection-dried vegetables is at least 1.5-3 times harder than that of the freeze-dried products. The reason of it that it takes place during the drying denaturation processes.
    The article summarizes the results of our research work listed above, in accordance with our experiments conducted by using the characteristic fruits (apple, plum) of the Nyírség Region.

  • New challenges in soil management
    91-92
    Views:
    189
    Soil management represents two important tasks that are harmonization of the soil protection with demands of the crop to be grown on the given land under prevailing farming condition. Further goals are to preserve and/or develop the soil physical, biological and chemical condition and to avoid the unfavourable changes of the soil biological activity and the soil structure. Classical authors emphasised the importance of creating proper seedbed for plants. In the physical approach, tillage was believed to play an important role in controlling soil processes. Consequently, the period of several centuries dominated by this approach is referred to as the era of crop-oriented tillage (Birkás et al., 2017). The overestimation of the importance of crop requirements resulted in damaging the soils, which inevitably led to turn to the soil-focused tillage. Since the first years of climate change, as the new trends have raised concern, tillage must be turned into a climate-focused effort with the aim of reducing climate-induced stresses through improving soil quality.
    The development of soil management has always been determined by the economical background. At the same time, deteriorating site conditions have contributed to the conception of new tillage trends by forcing producers to find new solutions (e.g. dry farming theory in the past or adaptable tillage theory nowadays). Győrffy (2009) recited the most important keywords were listed in 2001 and that seemed to be important in the future of crop production. These keywords (endeavours) were as follows:
    − Biofarming, organic farming, alternative farming, biodynamic farming, low input sustainable agriculture;
    − Mid-tech farming, sustainable agriculture, soil conservation farming, no till farming, environmentally sound, environmentally friendly, diversity farming;
    − Crop production system, integrated pest management, integrated farming, high-tech farming;
    − Site specific production, site-specific technology, spatial variable technology, satellite farming;
    − Precision farming.
    Győrffy’s prognosis proved to be realistic and the efforts mentioned above have mostly been implemented. New challenges have also appeared in soil management in relation to the last decades. The most important endeavours for the future are:
    1) Preserving climate-induced stresses endangering soils.
    2) Turn to use climate mitigation soil tillage and crop production systems.
    3) Applying soil management methods are adaptable to the different soil moisture content (over dried or wet may be quite common).
    4) Use effectual water conservation tillage.
    5) Use soil condition specific tillage depth and method.
    6) Adapting the water and soil conservation methods in irrigation.
    7) Preserving and improving soil organic matter content by tillage and crop production systems.
    8) Considering that stubble residues are matter for soil protection, humus source and earthworm’ feed.
    9) Site-specific adoption of green manure and cover crops.
    10) Applying site-adopted (precision) fertilization and crop protection. Considering the development in agriculture, new endeavours will occur before long.
  • New methods of compost homogeneity determination in sewage sludge based compost prisms
    49-52
    Views:
    127

    There is no effective method of homogeneity measurement of compost prism. The most frequently used technology is the examination of the particle distribution. This method needs a lot of time and large number of samples. The aim of our research is establishing different effective methods to determine the homogeneity of compost prisms. During our work, we examined the homogeneity of a prism made of sewage sludge and saw-dust mixture.
    The measurements were based on the different properties of raw materials. According to this we examined the homogeneity by moisture content, heavy metal content and gas distribution measurements.
    The most effective method is the measurement of gasconcentration. Although gas-concentration measurements it need special equipment it has more advantages than the other methods. The examination of gas-distribution compensates the problem of sampling because the measurement is direct. It provides the opportunity to estimate the amount of emitted toxic gases and to determine the maturity of the compost and the effectiveness of the degradation.

  • The Impact of Water Supply on the Quality and Health of Potato
    144-147
    Views:
    103

    Besides its effect on potato yield, water also has a significant impact on yield quality. Excess water (too much precipitation, over-irrigation) and the lack of water (lack of precipitation or irrigation) both trigger stress in the plant and can significantly worsen the quality of the yield (seed potato) and deteriorate the health of the plant and the seed potato. Excess precipitaton or irrigation water leaches nitrate-nitrogen under the rhizosphere, consequently, the amount of available nitrogen decreases leading to the deficiency of N in potato. If water cover (the maximally saturated state of soil) exceeds 8-12 hours, it can cause root destruction (because of the lack of oxygen), which leads to the wilting and later to the death of the plant. Abundance of water caused by excess precipitation or irrigation is a major problem primarily on sandy loam, loam and clay loam soils with bad structure and water management qualities, but also on any soils, which are over-irrigated or irrigated at an improper time. Symptoms of the lack of water are detectable mostly when the available water content of the soil (disponible water) decreases under 60-65%.
    In the present year, there was a lack of precipitation on the Great Plain, which can be compensated by proper irrigation. Unfortunately, this problem is further intensified by the high temperature, which results in faster ripening and accompanied with fluctuating soil moisture content, in the formation of secondary tubers.

  • Overview of test methods used to classify wheat flour and bread samples – REVIEW
    27-34
    Views:
    54

    In Hungary, common wheat (Triticum aestivum ssp. vulgare) is of good quality and world famous. In addition, it plays an important role in the human diet. The classification of flours ground from wheat is quite decisive and there are several methods for its examination. The most important flour testing requirements include moisture content, protein content gluten properties and the most important bakery value number. The measured characteristics give us the opportunity to conclude about the properties of the dough, and then bakery products. Several dynamic and static methods have been developed to study the physical properties of dough. The evaluation of products can be carried out in several respects with the help of a baking test. The multitude of methods currently used to qualify flour, dough and finished products also proves that the overview of the methods is quite topical.

  • Study of the biodegradation of slaughterhause feather waste by Bradford method
    77-81
    Views:
    119

    The 15–20% of the by-products of meat- and poultry industry – that unsuitable for human consumption – contains keratin. The slaughter technology of poultry produces large amount of poultry feather with 50–70% moisture content. This means more million tons annually worldwide (Williams et al., 1991; Hegedűs et al., 1998). The keratin content of feather can be difficulty digested, so physical, chemical and/or biological pre-treatment is needed in practice, which has to be set according to the utilization method. The microbiological and enzymatic degradation of feather to soluble protein and amino acids is a very favourable and relatively cheap opportunity to produce valuable products of the resulting feather. Our applied treatments were based on the determination of the most effective method, which is able to follow the biodegradation of waste poultry feather.

  • Examination and statistical evaluation of physico-chemical parameters of windrow composting
    33-38
    Views:
    189

     

    The treatment and utilization of plant and animal waste and by-products from agriculture is very diverse. Traditional environmental management practices for waste management have been retained through soil conservation and the applied of recycle degradable organic substances in soil. The management of by-products from agriculture (animal husbandry) is important because a closed loop can be created to utilize by-products (manure, feathers) from the production of the main product (eggs, meat, milk) and to form a raw material for a new product. It is important to treat the resulting by-products, especially deep-litter manure, as it has served as a basis for compost-treated manure to develop an organic-based, soil-conditioning product line. Poultry manure by itself is not suitable as a substrate for aerobic decomposition, so it has to be mixed with other substances (zeolite, bentonite, soil), because of its high nutrient capacity, it is an acidifying substance.

    The aim of this study was to compost the mixture of poultry manure and hen manure by the addition of zeolite and to monitor the composting process. It was also our aim to statistically determine the effect of the zeolite on parameters describing the composting process.

    The windrow composting experiments were set up in the composting area of the University of Debrecen, Institute of Water and Environmental Management. The composting experiment was 62 days long, during which the main parameters describing the composting process were continuously monitored: temperature (°C), moisture content (w/w%), electrical conductivity (mS/cm), organic matter content (w/w%), examination of nitrogen forms (w/w%). In this study, three factors were investigated: temperature, humidity, and pH. For statistical evaluation, R software and RStudio user interface were used. We developed a repeated measurement model, in which the fixed and random effects were determined for our parameters under study, and the resulting relationships were shown on interaction plots.

    Based on our results, the temperature of the prisms has become independent of the ambient temperature and the composting stages can be separated in both the control and the zeolite treated prisms. In the repeated measurement model, we proved that treatment, time and treatment: time interaction were significant at both temperature and pH.

  • Evaluation of striptillage and conventional tillage in maize production
    37-40
    Views:
    156

    Tillage changes soil properties and the way how the environment affects those properties. Soil properties and environment determine the rate of water movement in liquid and gaseous form into and out of soil. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management and the KITE PLC, various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok county. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively. The purpose of the present study is to compare these cultivation systems according to the soil- and maize kernel moisture content and to the yield based on the years of 2012 and 2013.