Search

Published After
Published Before

Search Results

  • Opportunities for improving the nutritional value of cereal-based products
    275-278
    Views:
    761

    We set up experiments for improving the nutritional value of cerealbased products. Our aims were to decrease the energy content of bakery products with the mixing of plant originated raw materials and byproducts with high fibre contents, and we have evaluated the effect of sodium-chloride on the physical properties of bakery products. We found that the apple pomace, the byproduct of juice production, is excellent for increasing of fibre content of bakery products and the further aim of investigation is to develop economical ways of hygienic byproduct handling and purification. Our experiments, evaluate the bakery use of triticale, have significant achievements and the breads made from triticale flour and whole-grain are commercially available nowadays. Our investigations included the possibilities of decrease of toxin contamination of cereals and our results can form a part of risk estimation systems after further experiments .

  • Desert greens: Unveiling the antioxidant power and health benefits of Qatar's locally grown leafy vegetables
    11-17
    Views:
    565

    The long-term consumption of diets rich in plant polyphenols has a high potential to reduce the risk of chronic diseases such as cancer, cardiovascular disease, and diabetes. This study focuses on the phenolic and antioxidant properties of eight green leafy vegetables, red spinach, green spinach, water spinach, chives, rocca, Swiss chard, jute mallow, and purslane, commonly cultivated in Qatar. Antioxidant capacity (AC) was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The total phenolic content (TPC) of the samples was quantified using the Folin-Ciocalteu assay. Among all the vegetables, results indicated significant differences among all examined values at level of 5% Jute Mallow exhibited the highest phenolic content at 205.39±11.50 mg GA/100g, followed by Green Spinach at 189.58±10.56 mg GA/100g and Red Spinach at 185.15±2.93 mg GA/100g. Swiss chard exhibited the highest antioxidant activity of 89.26%. This study provides valuable data on these vegetables to positively affect the health and well-being of the population. Intensifying further future investigation to embrace a wider phytochemical profile (e.g., flavonoids, carotenoids, vitamin C), varied antioxidant assays (e.g., FRAP, ABTS), and bioavailability tests would expand the understanding of the studied leafy vegetables health benefits.

  • Effect of Selenium Supplementation on in vitro Radish and Green Pepper Seedlings Germination
    149-155
    Views:
    554

    Selenium (Se) is an essential trace element for animals, microorganisms and some other eukaryotes. It has become increasingly evident that Se plays a significant role in reducing the incidence of lung, colorectal and prostate cancer in humans. Although there is evidence that selenium is needed for the growth of algae, the question of essentiality of Se in vascular plants is unresolved. Therefore Raphanus sativus (Se accumulator) and Capsicum annuum (non Se accumulator) were treated with 0-200 mg/l natrium-selenate. The results showed that lower (2 mg/l) concentration natrium-selenate increased the fitomass and total antioxodant capacity in seedlings.

  • Studying of quality parameters of Hungarian and Greek honey samples
    147-153
    Views:
    744

    Honey has been a valuable food for mankind since ancient times. It was the only sweetener until the start of industrial sugar mass production. Honey plays an important role in our nutrition and its positive effects on health are well-known. The quality of Hungarian honey is perfect, so it is very important to safeguard and monitor its quality continuously and to build up a good traceability and quality assurance system. For such a system, it is necessary to study the nutritional properties and the origin of different honey samples. In our study, we study Hungarian and Greek honey.

  • Element content analyses in the Institute for Food Sciences, Quality Assurance and Microbiology
    203-207
    Views:
    320

    The role of chemical elements to ensure and promote our health is undisputed. Some of them are essential for plants, animals and human, others can cause diseases. The major source of mineral constituents is food, drinking water has a minor contribution to it, so the knowledge of elemental intake through food is crucial and needs continuous monitoring and by this way it promotes the food quality assurance and dietetics.
    With the evolution of spectroscopic methods increasingly lower concentrations could be determined, so the elemental composition of a sample could be more precisely and fully described. Due to the results the gathered knowledge up to the present is supported and new observations can be done helping us to understand such complex systems as biological organisms are.
    The quality of a food is determined by the full process of its production, consequently it starts with agricultural production so elemental-analysis usually cover the whole soil – plant – (animal) – food chain, by this way the „Fork-to-Farm” precept is true in elemental analysis field also.
    The history of elemental analysis in the University of Debrecen, Centre for Agricultural and Applied Economic Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Processing, Quality Assurance and Microbiology goes back to 1980s when the so called Regional Measurement Central gave the background for research. The continuous deployment resulted in an obtain of an inductively coupled plasma atomic emission spectrometer (ICP-AES) in 1988, which extended the scope of examinations due to its excellent performance characteristics
    compared to flame atom absorption (FAAS) and flame emission spectrometers (FES). The instrumental park retain up to date correlate to the developing analytical techniques due to acquiring a newer ICPAES in 1998 and an inductively coupled plasma mass spectrometer in 2004 – which sensitivity is three order of magnitude better compared to ICP-AES. The Institute supports the work with its own ICP-AES and ICP-MS since 2011. 

  • Application of the Collision Cell (CCT) in the ICP-MS Analytical System
    120-125
    Views:
    594

    Our laboratory has seen a sharp rise in the number of requests for the analysis of smaller and smaller concentrations of elements from foods, plants, soil, organic fertiliser, irrigation and ground water, sewage, sewage sludge, raw material of food, as well as human and animal origin samples. From the above elements the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. Our method of analysis is to use our ICP-MS instrument, together with a ICP-MS with Collision Cell Technology (CCT). The CCT method has better detection limit, with 1-3 magnitudes, compared to the normal ICP-MS analytical method. The CCT has better detection limits mainly for the following elements in the periodical system: analysis of arsenic, selenium, germanium, vanadium and chromium. Additionally a collision cell can be applied for the analysis of silicium, sulphur, zink, copper, iron, calcium, magnesium and potassium in smaller concentrations.

  • Effect of molybdenum treatment on the element uptake of plants in a long-term experiment
    121-125
    Views:
    321

    Molybdenum as a constituent of several inmportant enzymes is an essential micorelement. It can be found in all kind of food naturally at low level, however, environmental pollution, from natural or anthropogenic sources, can lead to high level of the metal in plants. Our study is based on the long-term field experiments of Nagyhörcsök, where different levels of soil contamination conditions are simulated. Plant samples were collected from the experiment station to study the behaviour of elements: uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop.
    In this work we present the effect of molybdenum treatment on the uptake of other elements. Molybdenum is proved to be in an antagonist relationship with copper and sulphur, while molybdenum-phosphorus is a synergist interaction.
    However, in most of the plants we studied increasing molybdenum-treatment enhanced cadmium-uptake. We have found the most significant cadmium-accumulation in the case of pea, spinach and red beet.

  • Overview of test methods used to classify wheat flour and bread samples – REVIEW
    27-34
    Views:
    333

    In Hungary, common wheat (Triticum aestivum ssp. vulgare) is of good quality and world famous. In addition, it plays an important role in the human diet. The classification of flours ground from wheat is quite decisive and there are several methods for its examination. The most important flour testing requirements include moisture content, protein content gluten properties and the most important bakery value number. The measured characteristics give us the opportunity to conclude about the properties of the dough, and then bakery products. Several dynamic and static methods have been developed to study the physical properties of dough. The evaluation of products can be carried out in several respects with the help of a baking test. The multitude of methods currently used to qualify flour, dough and finished products also proves that the overview of the methods is quite topical.

  • Molybdenum - accumulation dynamics of cereals on calcareous chernozem soil
    81-85
    Views:
    435

    This work is about the molybdenum-accumulation of cereals analyzing soil and plant samples from a field experiment set in
    Nagyhörcsök by Kádár et al. in 1991.
    In this long-term field experiment different levels of soil contamination conditions are simulated. Soil and plant samples were collected
    from the experiment station to study the behaviour of molybdenum.
    In this report results of maize, winter wheat, winter barley and soil analysis are presented. The conclusions are as follows:
    – Analysing soil samples from 1991 we have found that roughly half of the molybdenum dose applied is in the form of NH4-acetate+EDTA soluble
    – Comparing element content of grain and leaf samples we have experienced that molybdenum accumulation is more considerable in the  vegetative plant parts
    – Winter wheat accumulated less molybdenum then maize in its vegetative parts. Comparing molybdenum content of winter wheat to winter barley we found that the concentration of the element in wheat was lower by half than in the winter barley. It seemed that molybdenum accumulated to the least degree in winter wheat.

  • Change of antioxidant compounds of spices during drying
    77-81
    Views:
    334

    Spices and herbs have been used by humanity for thousands of years, so they are very important plants.

    In this study, the change of dry matter content and antioxidant compounds of eight spices (basil, thyme, rosemary, mint, parsley, lemongrass, chives, coriander) have been examined the raw plants and in plants preserved by three different drying methods (an oven in 50–60°C; drying at room temperature; lyophilisation between -40 and -50°C, under pressure), because we wanted to see the change of the parameters.

    The water content of raw plants was very high, i.e. the dry matter content was very low. By the application of the three drying methods nearly 100% of the water has left the plants, with the exception of the lyophilized basil and rosemary.

    Based on the results related to the original material, lyophilized has proved to be the best treatment for the preservation of antioxidant compounds, however air drying also showed high results for some spices.

     

  • Parameter optimization of an inductively coupled plasma mass spectrometer for measuring arsenic and selenium
    81-85
    Views:
    407

    In the last decades, an increased interest has evolved in arsenic and selenium. The aim is to understand the environmental, agricultural and biological roles of these elements. In the case of arsenic, the major reasons are the relatively high concentration of arsenic in marine biota (mg kg-1) and the arsenic contaminated drinking water bases of some Asian countries, as well as Hungary. The toxicity of higher level selenium content is also known; nevertheless, selenium is essential for several biological functions. Considering its essentialness, in our country, the insufficient selenium intake rate causes a lack of selenium. Measuring the concentrations of these elements provides crucial, but unsatisfactory information, as the speciation, i.e. the form of an element presented in a sample is also required.
    In both cases, the most suitable method to determine concentration is inductively coupled plasma mass spectrometry (ICP-MS). Our objective was to optimize the variable parameters of the ICP-MS to attain the lowest (the best) detection limit. For this purpose, we investigated the effect of parameter change on net signal intensity and relative signal intensity. With the optimized parameter settings, the limits of detection for arsenic and selenium were determined, which are 0,032 ng dm-3 for arsenic, and 0,097 ng dm-3 for selenium. 

  • The importance of selenium in the living world and in the scientific research
    278-286
    Views:
    571

    Presently, selenium (Se) is one of the most investigated microelements. It has an important proven role in many vital processes. Directly or indirectly, selenium deficiency can play a role in the development of many diseases. On the other hand, the concentration range in which selenium is essential is narrow; there is a narrow gap between necessary and toxic content in dietary intake. In this context, selenium contamination poses a further health risk for people if they live near the industrial areas and mining activity.
    In this paper, we comprehensively introduce the very important trace element selenium. We studied the base parameters, deposit, analytic and deficiencies, problem of contamination and also the solution of contamination problems of selenium.

  • Comparison of the sample preparation methods worked out for the examination of the element content of wine
    77-82
    Views:
    361

    The examination of the potentially toxic elements content of the wines is not easy task, because the most elements are in little concentration (mg kg-1 or μg kg-1) in the wine and the wines contain great amount of organic matrix. The efficient sample preparation is essential for the accurate determination of element content. The eim of our research was to determine which sample preparation method will be the most efficient in examination of wines with ICP technology. The examined wine sample was a 2008 Chardonnay from the Eger wine region. We did the sample preparation and analysis examination in University of Debrecen, Centre for Agricultural and Applied Economic Sciences, Institute of Food Science, Quality Assurance and Microbiology.
    We did the analysis examinations with ICP- MS (inductively coupled plasma mass spectroscopy). We always did the sample preparations and the examinations in three times rehearsal. The applied sample preparation methods: dilution with distilled water, open digestion and microwave digestion. 
    We were able to measure B, Al, Mn, Fe and Zn with only dilution and open sample preparation. In the smaller quantity present Sr and Ba were measurable in the wine in the case of all three methods well. We were able to measure the Co with dilution and open digestion method,  while Cr, Ni, and Te with only dilution method. In the case of arsenic we were not able to measure reliable result with dilution and open digestion method because of organic matrix and other components
    (alcohols, monosaccharides, polysaccharides, polyalcohols and inorganic salts). On the whole we are able to say that in the case of certain elements (B, Mn, Fe, Zn, Sr, Ba) the open digestion and dilution sample preparation is applicable well, however, in the case of certain elements (As, Al, V, Cr, Se, Mo, Cd, Hg, Pb) we have to develop the methods. It may be development of one of the way, if we develop sample preparation methods to examined element specifically and not
    to wine generally.

  • Selenium-speciation experiments from soil samples by accept of ionchromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) method
    106-111
    Views:
    505

    In these days, selenium is one of the most investigated microelements. It has an important proven role in many vital processes. Selenium deficiency can play a role in the contraction of many diseases (e.g. cancer, heart diseases, etc.) and in the aggravation of their clinical aspect directly or indirectly. In this paper, we study the soil samples of an outdoor experiment for the conversion of the inorganic selenium salt that was spread out in different doses. The danger of the wash-out effect was also investigated. Our experiments showed, that most of the inorganic selenite transforms to selenate form during the years, and in this selenate form it moves to the deeper layers of soil.

  • Optimization of inductively coupled plasma mass spectrometer parameter’s to measuring arsenic and selenium
    59-64
    Views:
    635

    In the last decades an increased interest has been evolved about arsenic and selenium. The aim is to understand the environmental, agricultural and biological role of the these elements. In case of arsenic the mayor reasons are the relatively high concentration of arsenic in marine biota (mg kg-1) and the arsenic contaminated drinking waterbases of some Asian countries besides Hungary. The toxicity of higher level selenium content is also known, nevertheless selenium is essential for some biological functions. Considering its esssentiality, in our country the insufficient selenium intake rate couse lack of selenium. Measuring the concentrations of these elements are cruital but not satisfactory information, but the speciation, that is the form of an element presented in a sample is also required. 
    In both cases the most suitable method to determine concentration is the inductively coupled plasma mass spectrimetry. My objective was to optimase the changeable parameters of the ICP-MS for reaching the lowest (the best) detection limit. For this porpuse I have investigated the effect of parameter change on nett signal intensity and relative signal intensity. With the optimased parameter settings the limit of detection for arsenic and selenium were determined, which are 0,032 ng cm-3 for arsenic, and 0,097 ng cm-3 for
    selenium.