Articles

Desert greens: Unveiling the antioxidant power and health benefits of Qatar's locally grown leafy vegetables

Published:
2025-06-08
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
AlNasr , M. ., Salam , H. ., Al-Kendi, A. . ., AlAbdi , T. ., Ahmed, A. E. M., Mukarram, S. A. . ., Kovács, B. ., & ElObeid , T. . (2025). Desert greens: Unveiling the antioxidant power and health benefits of Qatar’s locally grown leafy vegetables. Acta Agraria Debreceniensis, 1, 11-17. https://doi.org/10.34101/actaagrar/1/15446
Received 2025-01-23
Accepted 2025-04-03
Published 2025-06-08
Abstract

The long-term consumption of diets rich in plant polyphenols has a high potential to reduce the risk of chronic diseases such as cancer, cardiovascular disease, and diabetes. This study focuses on the phenolic and antioxidant properties of eight green leafy vegetables, red spinach, green spinach, water spinach, chives, rocca, Swiss chard, jute mallow, and purslane, commonly cultivated in Qatar. Antioxidant capacity (AC) was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The total phenolic content (TPC) of the samples was quantified using the Folin-Ciocalteu assay. Among all the vegetables, results indicated significant differences among all examined values at level of 5% Jute Mallow exhibited the highest phenolic content at 205.39±11.50 mg GA/100g, followed by Green Spinach at 189.58±10.56 mg GA/100g and Red Spinach at 185.15±2.93 mg GA/100g. Swiss chard exhibited the highest antioxidant activity of 89.26%. This study provides valuable data on these vegetables to positively affect the health and well-being of the population. Intensifying further future investigation to embrace a wider phytochemical profile (e.g., flavonoids, carotenoids, vitamin C), varied antioxidant assays (e.g., FRAP, ABTS), and bioavailability tests would expand the understanding of the studied leafy vegetables health benefits.

References
  1. Alam, Md. A.; Juraimi, A.S.; Rafii, M.Y.; Abdul Hamid, A.; Aslani, F.; Hasan, M.M.; Mohd Zainudin, M.A.; Uddin, Md. K. (2014): Evaluation of Antioxidant Compounds, Antioxidant Activities, and Mineral Composition of 13 Collected Purslane (Portulaca oleracea L.) Accessions. BioMed Research International, 2014, 1–10. doi.org/10.1155/2014/296063
  2. Alara, O.R.; Abdurahman, N.H.; Ali, H.A. (2023): Optimization of microwave-enhanced extraction parameters to recover phenolic compounds and antioxidants from Corchorus olitorius leaves. Chemical Papers, 77(8), 4217–4233. doi.org/10.1007/s11696-023-02771-x
  3. Alsafran, M.; Usman, K.; Rizwan, M.; Ahmed, T.; Al Jabri, H. (2021): The Carcinogenic and Non-Carcinogenic Health Risks of Metal(oid)s Bioaccumulation in Leafy Vegetables: A Consumption Advisory. Frontiers in Environmental Science, 9, 742269. doi.org/10.3389/fenvs.2021.742269
  4. Bang, J.-H.; Lee, K.J.; Jeong, W.T.; Han, S.; Jo, I.-H.; Choi, S.H.; Cho, H.; Hyun, T.K.; Sung, J.; Lee, J.; So, Y.-S.; Chung, J.-W. (2021): Antioxidant Activity and Phytochemical Content of Nine Amaranthus Species. Agronomy, 11(6), 1032. doi.org/10.3390/agronomy11061032
  5. Bao, Y.-J.; Zhou, Q.; Yu, X.; Castellino, F.J. (2023): Analysis and Characterization of Glutathione Peroxidases in an Environmental Microbiome and Isolated Bacterial Microorganisms. Journal of Microbiology and Biotechnology, 33(3), 299–309. doi.org/10.4014/jmb.2209.09006
  6. Biswas, A.; Dey, S.; Xiao, A.; Huang, S.; Birhanie, Z.M.; Deng, Y.; Liu, L.; Li, D. (2023): Phytochemical content and antioxidant activity of different anatomical parts of Corchorus olitorius and C. capsularis during different phenological stages. Heliyon, 9(6), e16494. doi.org/10.1016/j.heliyon.2023.e16494
  7. Bondonno, C.P.; Dalgaard, F.; Blekkenhorst, L.C.; Murray, K.; Lewis, J.R.; Croft, K.D.; Kyrø, C.; Torp-Pedersen, C.; Gislason, G.; Tjønneland, A.; Overvad, K.; Bondonno, N.P.; Hodgson, J. M. (2021): Vegetable nitrate intake, blood pressure and incident cardiovascular disease: Danish Diet, Cancer, and Health Study. European Journal of Epidemiology, 36(8), 813–825. doi.org/10.1007/s10654-021-00747-3
  8. Bunea, A.; Andjelkovic, M.; Socaciu, C.; Bobis, O.; Neacsu, M.; Verhé, R.; Camp, J.V. (2008): Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 108(2), 649–656. doi.org/10.1016/j.foodchem.2007.11.056
  9. Caruso, G.; Stoleru, V.; De Pascale, S.; Cozzolino, E.; Pannico, A.; Giordano, M.; Teliban, G.; Cuciniello, A.; Rouphael, Y. (2019): Production, Leaf Quality and Antioxidants of Perennial Wall Rocket as Affected by Crop Cycle and Mulching Type. Agronomy, 9(4), 194. doi.org/10.3390/agronomy9040194
  10. Elobeid, T.; Ganji, V.; Al-Saeedi, S.; Mohamed, A.A.; Dahir, H.M.; Hassan, H.; Karam, L.; Attieh, G. (2021): Pesticide residues in foods and water in Qatar and their impact on food exposure risk assessment. British Food Journal, 123(12), 4082–4096. doi.org/10.1108/BFJ-01-2021-0040
  11. Erkan, N. (2012): Antioxidant activity and phenolic compounds of fractions from Portulaca oleracea L. Food Chemistry, 133(3), 775–781. doi.org/10.1016/j.foodchem.2012.01.091
  12. Frond, A.D.; Iuhas, C.I.; Stirbu, I.; Leopold, L.; Socaci, S.; Andreea, S.; Ayvaz, H.; Andreea, S.; Mihai, S.; Diaconeasa, Z.; Carmen, S. (2019): Phytochemical Characterization of Five Edible Purple-Reddish Vegetables: Anthocyanins, Flavonoids, and Phenolic Acid Derivatives. Molecules, 24(8), 1536. doi.org/10.3390/molecules24081536
  13. Fu, H.; Xie, B.; Ma, S.; Zhu, X.; Fan, G.; Pan, S. (2011): Evaluation of antioxidant activities of principal carotenoids available in water spinach (Ipomoea aquatica). Journal of Food Composition and Analysis, 24(2), 288–297. doi.org/10.1016/j.jfca.2010.08.007
  14. Ganskopp, D.; Bohnert, D. (2003): Mineral concentration dynamics among 7 northern Great Basin grasses. Journal of Range Management, 56(2). doi.org/10.2458/azu_jrm_v56i2_ganskopp
  15. Guo, Y.; Yao, S.; Yuan, T.; Wang, Y.; Zhang, D.; Tang, W. (2019): The spatiotemporal control of KatG2 catalase‐peroxidase contributes to the invasiveness of Fusarium graminearum in host plants. Molecular Plant Pathology, 20(5), 685–700. doi.org/10.1111/mpp.12785
  16. Hamzah, R.U.; Jigam, A.A.; Makun, H.A.; Egwim, E.C. (2013): Antioxidant Properties of Selected African Vegetables, Fruits and Mushrooms: A Review. In H. Makun (Ed.), Mycotoxin and Food Safety in Developing Countries. InTech. doi.org/10.5772/52771
  17. House, N.C.; Puthenparampil, D.; Malayil, D.; Narayanankutty, A. (2020): Variation in the polyphenol composition, antioxidant, and anticancer activity among different Amaranthus species. South African Journal of Botany, 135, 408–412. doi.org/10.1016/j.sajb.2020.09.026
  18. Huda, A.K.S.; Issaka, A.; Kaitibie, S.; Haq, M.; Goktepe, I.; Moustafa, A.; Abdella, K.; Pollanen, M.; Moody, P.; Vock, N.; Huda, N.; Coughlan, K. (2018): Improving Vegetable Crop Production in Qatar: Strategies to determine optimum planting time, minimize production risk and maximize water and nutrient use efficiency. Qatar Foundation Annual Research Conference Proceedings, 2018. doi.org/10.5339/qfarc.2018.EEPP126
  19. Kwon, Y.I.; Vattem, D.A.;Shetty, K. (2006): Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac J Clin Nutr, 15(1): p. 107–18.
  20. Li, N.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Wang, Y.; Wu, C.; Rao, Z.; Du, L.; Zhao, R.; Yi, M.; Wan, Q.; Zhou, Y. (2021): Green leafy vegetable and lutein intake and multiple health outcomes. Food Chemistry, 360, 130145. doi.org/10.1016/j.foodchem.2021.130145
  21. Miller, V.; Mente, A.; Dehghan, M.; Rangarajan, S.; Zhang, X.; Swaminathan, S.; Dagenais, G.; Gupta, R.; Mohan, V.; Lear, S.; Bangdiwala, S.I.; Schutte, A.E.; Wentzel-Viljoen, E.; Avezum, A.; Altuntas, Y.; Yusoff, K.; Ismail, N.; Peer, N.; Chifamba, J.; Mapanga, R. (2017): Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): A prospective cohort study. The Lancet, 390(10107), 2037–2049. doi.org/10.1016/S0140-6736(17)32253-5
  22. Morris, M.C.; Wang, Y.; Barnes, L.L.; Bennett, D.A.; Dawson-Hughes, B.; Booth, S.L. (2018): Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study. Neurology, 90(3). doi.org/10.1212/WNL.0000000000004815
  23. Mzoughi, Z.; Chahdoura, H.; Chakroun, Y.; Cámara, M.; Fernández-Ruiz, V.; Morales, P.; Mosbah, H.; Flamini, G.; Snoussi, M.; Majdoub, H. (2019): Wild edible Swiss chard leaves (Beta vulgaris L. var. cicla): Nutritional, phytochemical composition and biological activities. Food Research International, 119, 612–621. doi.org/10.1016/j.foodres.2018.10.039
  24. Ninfali, P.; Angelino, D. (2013): Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia, 89, 188–199. doi.org/10.1016/j.fitote.2013.06.004
  25. Nurzyńska-Wierdak, R. (2023): Phenolic Compounds from New Natural Sources—Plant Genotype and Ontogenetic Variation. Molecules, 28(4), 1731. doi.org/10.3390/molecules28041731
  26. Pandey, K.B.; Rizvi, S.I. (2009): Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278. doi.org/10.4161/oxim.2.5.9498
  27. Pinto, T.; Aires, A.; Cosme, F.; Bacelar, E.; Morais, M.C.; Oliveira, I.; Ferreira-Cardoso, J.; Anjos, R.; Vilela, A.; Gonçalves, B. (2021): Bioactive (Poly)phenols, Volatile Compounds from Vegetables, Medicinal and Aromatic Plants. Foods, 10(1), 106. doi.org/10.3390/foods10010106
  28. Rahman, Md. M.; Rahaman, Md. S.; Islam, Md. R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, Md. S.; Ahmed, M.; Das, R.; Emran, T.B.; Uddin, Md. S. (2021): Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules, 27(1), 233. doi.org/10.3390/molecules27010233
  29. Roberts, J.L.; Moreau, R. (2016): Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food & Function, 7(8), 3337–3353. doi.org/10.1039/C6FO00051G
  30. Saadi Abdul-Jabbar, R. (2018): Polyphenol and Flavonoid Contents and Antioxidant Activity in Freshly Consumed Rocket (Eruca sativa). IOP Conference Series: Materials Science and Engineering, 454, 012158. doi.org/10.1088/1757-899X/454/1/012158
  31. Sacan, O.; Yanardag, R. (2010): Antioxidant and antiacetylcholinesterase activities of chard (Beta vulgaris L. var. Cicla). Food and Chemical Toxicology, 48(5), 1275–1280. doi.org/10.1016/j.fct.2010.02.022
  32. Serafini, M.; Peluso, I. (2017): Functional Foods for Health: The Interrelated Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables, Herbs, Spices and Cocoa in Humans. Current Pharmaceutical Design, 22(44), 6701–6715. doi.org/10.2174/1381612823666161123094235
  33. Sinaga, S.M.; Sudarmi, S.; Iksen, I.; Kevin, K.; Sari, M.P. (2018): Evaluation of Total Phenolic, Flavonoid Content, Antioxidant and In Vitro Antilithogenesis Activities of Chives Leaf (Allium schoenoprasum, L.). Rasayan Journal of Chemistry, 11(4), 1604–1608. doi.org/10.31788/RJC.2018.1144067
  34. Yong, Y.Y.; Dykes, G.; Lee, S.M.; Choo, W.S. (2017): Comparative Study of Betacyanin Profile and Antimicrobial Activity of Red Pitahaya (Hylocereus polyrhizus) and Red Spinach (Amaranthus dubius). Plant Foods for Human Nutrition, 72(1), 41–47. doi.org/10.1007/s11130-016-0586-x
  35. Zhou, C.; Zhu, C.; Fu, H.; Li, X.; Chen, L.; Lin, Y.; Lai, Z.; Guo, Y. (2019): Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). PLOS ONE, 14(10), e0223609. doi.org/10.1371/journal.pone.0223609