Search

Published After
Published Before

Search Results

  • Some important growing characteristics of apple and apricot cultivars in two fruit growing regions in Romania
    51-56.
    Views:
    176

    The aim of this study was to determine some important growing characteristics of 5 resistant apple (Rajka, Rubinola, Topaz, Otawa and Goldstar) and 7 apricot (NJA 19, Goldrich, Harcot, Venus, Comando, Olimp, Cea mai buna de Ungaria) cultivars in two fruit growing regions in Romania from 2000 to 2003. Height of the apple trees (4-year-old tree) ranged between 1.96 m (cv. Topaz) and 2.39 m (cv. Rubinola). Diameter of the crown ranged from 0.96 m (cv. Goldstar) to 1.12 cm (cv. Rajka). The trunk diameter ranged from 3.5 cm (cv. Goldstar) to 5.0 cm (cv. Rajka). The surface of the trunk section was the lowest for cv. Goldstar (9.7 cm') and the largest for cv. Rajka (19.6 cm). Height of the apricot trees (4 years old tree) ranged between 2.69 m (cv. Venus) and 3.38 m (cv. NJA - 19). Diameter of the crown ranged from 2.59 m (cv. Comandor) to 2.77 m (cv. Cea mai buna de Ungaria). The trunk diameter ranged from 9.54 cm (cv. Goldrich) to 13.30 cm (cv. NJA - 19). Length of annual branches was the lowest for cv. Goldrich (45.1 cm) and the highest for cv. NJA - 19 (83.8 cm). Bud swelling of apricot trees began on 8 March for cv. NJA - 19 and ended on 11 March for the control cultivar (Cea mai buna de Ungaria). The blooming started on 16 March for cv. NJA - 19 and 27 Mach for the control cultivar. Duration of fruit growth was 89 days for cv. NJA - 19 and 128 days for cv. Comandor. When the temperature decreased to 1.5 °C (in 2001), percentage of viable pollen grains ranged between 48.86 % (cv. Olimp) and 91.57 % (cv. Venus). The germinating grains ranged from 31 % (cv. Olimp) to 90 % (cv. Harcot). Free pollination was the lowest for cv. NJA - 19 (29 %) and the highest for cv. Harcot (41%), while self-pollination ranged between 6 (cv. Olimp) and 11 % (cvs. Comondor and Harcot). Apple yield ranged from 16.65 t/ha (cv. Otawa) to 24.35 t/ha (cv. Rajka) and the differences varied from 4.45 t/ha to - 3.25 t/ha compared to the control varieties. Apricot yield ranged from 11.47 kg/ tree or 9.53 t/ha (cv. Cea mai buna de Ungaria), to 38.83 kg/tree or 27.34 t/ha (cv. Olimp) and the differences varied from 3 t/ha to 17 t/ha compared to the control varieties. Apple fruit weight ranged from 162 g (cv. Otawa) to 222 g (cv. Goldstar) and apricot fruit weight from 42.52 g (cv. Goldrich) to 68.38 g (cv. Comandor). Color, taste and aroma were very specific to cultivars.

  • Evaluation of foreign apricot cultivars in Hungary
    51-55.
    Views:
    165

    The extension and renewal of cultivar assortment is one of the key elements in the improvement of apricot production. Competitiveness can only be achieved by planting cultivars which meet all market requirements and yield reliably under the environmental conditions of the given production site. Beside breeding programmes, the range of cultivars can also be extended by the domestication of foreign cultivars. Most apricot cultivars have low ecological tolerance, therefore, cultivars improved or developed in other countries should only be involved in production after due consideration. The suitability of such cultivars has to be examined for several years. Foreign apricot cultivars have been tested in our cultivar collection for over 10 years. Hereby, the most important aspects of market value and the adaptability to the environmental conditions of the production site are demonstrated. According to the results of our examinations the production of early ripening 'Orange Red' and `Goldrich' can be promising in Hungary. From cultivars ripening in the peak season only those are expected to be widely produced which differ from Hungarian cultivars or surplus them in some respects. From the cultivars examined 'Harogem' which ripens at the same time as `Gönci magyar kajszi' has remarkably aesthetic fruits with glossy surface, while the large fruits of `Hargrand' has firm pulp. Late ripening cultivars have significant importance in the northern border of production. According to our examinations the cultivars 'Callatis', `Comandor and `Sirena' are applicable in Hungary to extend the harvesting season.

  • Susceptibility of fruit of some plum and apricot cultivars to brown rot
    53-55.
    Views:
    334

    In this three-year study, incidence of brown rot (Monilinia spp.) on fruit of plum and apricot cultivars were evaluated in Kecskemét, Hungary. Results showed that most plum and apricot cultivars expressed symptoms caused by Monilinia spp, graded between 2 and 4 (10–75%) by the end of the summer in 2008–2010. Assessments on plum showed that only cultivars ‘Besztercei’, ‘Silvia’ and ‘Tuleu gras’ were partly tolerant to Monilinia spp., while the most susceptible cultivars were ‘Bluefre’ and ‘Stanley’. The most tolerant apricot cultivars were ‘Borsi-féle kései rózsa’, ‘Piroska’, ‘Pannónia’ and ‘Magyar kajszi’ while the most susceptible ones were cvs. ‘Budapest’ and ‘Mandulakajszi’. Susceptibility classes showed that only one plum (’Silvia’) and one apricot cultivar (‘Borsi-féle kései rózsa’) were available with low susceptibility.

  • Molecular characterization of apricot (Prunus armeniaca L.) cultivars using cross species SSR amplification with peach primers
    53-57.
    Views:
    241

    Apricot takes an important place in Hungarian fruit production. Considering morphological characteristics of apricots it was concluded that the genetics background of European cultivars is very limited. Molecular markers and their use for genotyping have revolutionized the identification of cultivars. In a classic apricot breeding program, it is important to be able to establish unique DNA profiles of selections to identify them unambiguously and to determine their genetic relationship. Presently SSR is far the most frequently performed technique for genetic diversity studies. In this study there were used peach and apricot primer pairs from four different sources in order to examine microsatellite polymorphism among cultivars and investigate relationships among them. The possibility of cross species amplification among different Prunus species using SSR primers allowed us to use primers developed in peach to study genetic diversity in apricot. In this work, 90% of the primers used were able to amplify SSRs in apricot and more than half of them were polymorphic. With the 10 primer pairs utilized were proven to be sufficient to set unique fingerprint for several cultivars studied. The obtained dendrogram classified of the 45 cultivars included in this study into two major groups and several subgroups.

  • Variability and differences of growth vigour in the set of 36 genotypes of apricot (Prunus armeniaca L.).
    30-34.
    Views:
    145

    Growth vigour of 36 apricot cultivars and new hybrids grafted on apricot seedling rootstock (Prunus armeniaca L.) was evaluated on the base of measurements of stem girth from the 411' to the 10th year after planting. There were differences in growth vigour of genotypes under study. In the evaluated set of genotypes the control cultivar 'Veecor may be classified as a genotype with below-average growth vigour. Only four genotypes (-Reale d'Imola-, Sanagian -Moldavskii krupnoplodnyl and 'LE-2385') were found with significantly higher growth vigour than that of control cultivar 'Veecot' in years of the end of experimental period. Two genotypes (Farmingdale', -LE-SE0-24') were found with significantly higher growth vigour only at the beginning of experimental period and one cultivar ('Vivagold-) with significantly lower growth vigour in the first four years. Genotypes with different growth vigour can be used in further breeding programmes and/or as components inhibiting or supporting the growth in indirect vegetative propagation. Within the whole experimental period, the rank of growth vigour of genotypes practically did not change. This was demonstrated by highly significant or significant coefficients of correlation existing between individual pairs of years (r=0.32+ to r=0.96++). As far as the time difference between years in individual pairs of years was higher, the correlation coefficients were lower. In individual years, variability of growth vigour was relatively low and ranged from 9.83 to 13.64%.

     

  • Genotyping Hungarian apricot cultivars for self-(in)compatibility by isoelectric focusing and PCR analysis
    69-72.
    Views:
    171

    Self-incompatibility (SI) in flowering plants is a widespread genetic system that promotes out-crossing. In Prunus species the SI is a gametophytic trait, which is controlled by a single multiallelic locus, termed S-locus. S-alleles codify stylar glycoproteins with ribonuclease activity (S-RNases). Our objective was to assess the S-genotype of some Hungarian apricot varieties by isoelectric focusing of stylar RNases as well as by PCR analysis using cherry consensus primers. Consensus primers amplified one or two bands of various sizes. Primers amplifying the 1st intron gained fragments the size of which ranged from 250 to 500 bp; while those amplifying the 2nd intron resulted in fragments of 800-2000 by length. Our data demonstrated that the first intron of the apricot S-RNase gene is shorter than the second one, which coincides with the structure of cherry S-RNase alleles. `Hargrand' (S1S2) and `Harcoe (S1S4) possessed one common S-RNase isoenzyme. Hungarian 'Orias' apricot cultivars showed different bands compared to the previous cultivars, but they shared completely identical patterns confirming that they possess the same S-genotype. 'Bergeron', `Harmat' and 'Korai zamatos' are characterised by an evidently distinct S-RNase pattern. The self-compatible cultivar (`Bergeron') had one allele, which suggests its correspondence to the Sc. Primers for the 2nd intron was unsuccessful in gaining fragments, which indicates that the 2nd intron in the Sc allele is too long to get any amplification. On the basis of our data, identities and differences were revealed in the S-allele constitution of some economically important Hungarian apricot cultivars at protein and DNA levels.

  • The effect of rootstock on the tree size of apricot cultivars
    57-58.
    Views:
    143

    The apricot is propagated on several kinds of rootstocks in Hungary. The main aspects of selecting rootstocks are as follows: adaptability to environmental circumstances, primarily soil conditions, ensuring the tree size that complies with the cultivation method, and compatibility with the grafted cultivar. At advanced, intensive orchards rootstocks ensuring smaller tree size are privileged. For the establishment of the appropriate cultivation system, it is important to be aware of the expected growing vigour and tree size of certain cultivar­rootstock combinations when the orchard is designed. In the course of our experiment the size of 15-year-old trees of 4 apricot cultivars were examined on several rootstocks at an orchard in Siófok. On the basis of the data measured for each cultivar-rootstock combination, it can be stated that trees on wild apricot (P. armeniaca) rootstocks are the largest in size. Trees on prune (P. domestica) rootstock have 10-15% smaller crown volume than the previous combination. Trees on bullace (P. insititia) rootstock have the smallest tree size and their crown volume is 30-50% smaller than that of the trees on P. armeniaca rootstock. Thus, the application of prune and bullace rootstocks is beneficial at intensive apricot orchards as the size of trees can be reduced by their usage. However, their compatibility with the cultivars and their adaptability to the ecological conditions of the production site have to be tested before applying them widely. In the course of our research incompatibility was not experienced for any of the cultivar-rootstock combinations examined. Nevertheless, the drought tolerance of the rootstocks examined showed significant differences. Trees on P. domestica or P. insititia rootstock requires more water than those on P. armeniaca rootstock, therefore, they have to be irrigated.

  • Postharvest methyl jasmonic acid and hot water can reduce the internal breakdown and quality loss of apricot fruit at shelf life
    31-34.
    Views:
    252

    The aim of this study was to investigate the postharvest effect of methyl jasmonic acid (MJ) and hot water on internal break-down and quality loss of apricot fruit under shelf life conditions. Cultivar Flavor cot apricot fruit were used to treat with water as control treatment, with 0.2 mmol/L MJ and with hot water 35 oC for 5 min. Fruit were stored at room temperature and were examined every 2 days for internal break-down and quality loss. Results showed that treated fruits with MJ and hot water showed the lowest weight loss and the highest firmness during all assessment times. Control fruits showed losing of customer acceptance from the day 2 of shelf life and then decreased dramatically to approximately loss all the acceptance at day 8. The SSC showed sever reduction in untreated fruit after day 6 at shelf life. Total phenol content reduced and polyphenol oxidase (PPO) increased in all assessment times for all treatments. Meanwhile MJ showed the best values for phenol content and lowest PPO activity. The results supported the idea of using some elicitors like methyl jasmonic and hot water treatments to enhance shelf life of apricot fruit.

  • Growth and productivity of plum cultivars on various rootstocks in intensive orchard
    77-81.
    Views:
    342

    Trees of three plum cultivars (Stanley, Cacanska Lepotica and Althann's Gage) were planted at Szigetcsép experimental station in Spring 1994 and trained to slender spindle with the aim to test their growth, effect of productivity under not irrigated conditions and to evaluate the adaptability of rootstock/scion combinations to intensive orchards. As control, trees on Myrobalan C 162/A (P. cerasifera) seedling are planted. In the trial two rootstocks are from Slovakia: Myrobalan MY-KL-A (red leaf) and Myrobalan MY-BO-1, vegetatively propageted. Further on two French rootstocks, the Marianna GF 8-1: Marianna plum (P. cerasifera x P munsoniana) and the Sainte Julien GF 655/2 (P. insititia) were involved. The Hungarian bred plum Fehér besztercei (P. domestica), which is recommended as apricot rootstock is also tested. Rootstocks MY-BO-1 and Fehér besztercei were planted with cultivar Stanley only. Trees were planted to a spacing of 5x3 m trained to slender spindle with 3-4 permanent basal branches. After yield start (1997) trees have been pruned only in summer, after harvest. In the alleyway the natural plant vegetation is mown, the orchard is not irrigated.

    Based on tree size, vigorous rootstocks are Marianna GF 8-1 and Myrobalan C 162/A seedling, medium vigorous are MY-BO-I and MY­KL-A; vegetative propageted myrobalan plums from Slovakia, while St. Julien GF 655/2 and Feller Besztercei proved to be growth reducing rootstocks. No significant difference between the rootstocks was found in turning to bearing. Under non-irrigated condition at Szigetcsép, cultivar Stanley produced the highest yield per area unit on vigorous rootstock (GF 8-1). The cultivar Althann's Gage produced the highest yield efficiency on Marianna GF 8-1 and they were healthy in the last 10 years. The symptoms of Althann's Gage trees on MY-KL-A rootstock indicate a possible incompatibility. The average fruit weight was significantly influenced by crop load on cultivar Cacanska lepotica, while no statistically proved differences were found on Stanley and Althann's Gage. The Cacanska lepotica trees produced significantly lower yield and larger fruit weight on St. Julien GF 655/2 rootstock. Adaptability to spindle training system depends on vigour of scion/rootstock combination: low or medium vigour cultivars (C. lepotica, Stanley) are good choice for spindle training systems even on vigorous rootstock; while the St. Julien GF 655/2 can be recommended only for vigorous Althann's Gage under our soil and climate conditions.

  • Effect of modified atmosphere package on apricot fruit storability
    30-32.
    Views:
    203

    The aim of this work was to study the effect of modified atmosphere package (MAP) on apricot storability. Apricots (Prunus armeniaca L.) cultivar Jumbo cot were harvested at commercial ripening stage. The fruits were treated with different storage treatments as following: i) control storage for 13 days at 1 °C, ii) stored fruit at 1 °C for 10 days then 3 days at shelf at 25 °C, iii) fruit stored in MAP at 1 °C for 13 days and iv) fruit stored in MAP at 1 °C for 10 days then 3 days at shelf at 25 °C. Data showed the positive effect of MAP in keeping the apricot fruit for long time with better quality than the control fruit. MAP showed positive effect by recording the lowest fruit weight loss, the highest firmness and lowest chilling injury and fruit decay.

  • Brown rot blossom blight and fruit rot of apricot in Hungary
    139-141.
    Views:
    345

    The aim of our two-year study was to assess incidence of brown rot blossom blight and fruit rot caused by Monilinia laxa in 2003 and 2004. Assessments of incidence were made on cv. Bergeron (susceptible to brown rot) in a flatland and a hilly growing area (at Cegléd and Gönc, respectively). In both locations, plant protection was performed according to the integrated fruit production guidelines and small untreated plots were set up for each cultivar in both years. In 2003, when weather conditions were dry and hot, brown rot incidence was low (less than 10%) on both blossoms and fruits. Monilinia laxa did not cause significantly different blossom blight and fruit rot at the hilly (Gönc) area compared to the flatland, not even in untreated plots. However, in 2004, when spring and summer weather conditions were wet and cold, Incidence reached 95% for blossom blight and 33% for fruit rot in the untreated plots. Blossom blight incidence was 1.5-2 times higher in the flatland area compared to the hilly growing area. During the blooming period of apricot, two (at flower bud stage and at full bloom) and three (at flower bud stage, at full bloom and at petal fall) fungicide applications were necessary for the successful control at Gönc and Cegléd, respectively. The difference between the two orchards was due to the fact that blooming started one week later in the hilly region (at Gone) than in the flatland region (at Cegléd), therefore, the critical weather period coincided with blooming in the orchard in the hilly region only partially. Fruit rot incidence was similar in both regions as the amount and distribution of rainfall were similar during the fruit ripening period.

  • Determination of the cold tolerance off sour cherry cultivars with frost treatments in climatic chamber
    49-54.
    Views:
    267

    Nowadays, sour cherry buds can be seriously damaged by spring and winter frosts. Unlike other fruit species threatened by high frost damage, sour cherry cultivars have not been assessed for frost tolerance. The aim of .our survey was to establish the relative cold tolerance of the Hungarian cultivars after treatment in a climatic chamber, and to optimize the methodology formerly elaborated for the frost treatment of apricot. Fourteen cultivars of Hungarian sour cherry (Prunus cerasus) were used in the experiments, which spanned the winters of 2005/2006 and 2006/2007. Our data were used to rank cultivars in two groups according to their levels of cold resistance. We also recommend critical temperatures and treatment times for the testing of sour cherry cultivar resistance to cold in climatic chambers.

  • Comparative analysis of sour cherry cultivars on their ecological and biological indicators
    7-28.
    Views:
    361

    Sour cherries developed in the northern hemisphere, an alloploid hybrid of dwarf sour cherries (Prunus fruticosa) and bird cherries (P. avium), born in the confluence of the two species. However, the ecological and, above all, cold tolerance of the ancestor of cultivated sour cherries is higher than that of wild cherries (De Candolle, 1894; Rehder, 1954; Terpó, 1974; Iezzoni et al., 1991; Faust & Surányi, 1997). The cultivation limits are in the northern hemisphere 38-44. degree. The Carpathian Basin, the Balkans and Asia Minor are considered to be the main birthplaces for sour cherries. The genetic and morphological diversity of sour cherries is greater than that of the basic species (Iezzoni et al. 1991; Faust & Surányi, 1997). In the study, 472 sour cherry cultivars were compared based on 7 relative ecological indicators and 3 biological values. Compared to other Prunus species, we mostly found less variability in sour cherries - not counting their salt tolerance (SB). The partial similarity between open pollination (OP), frost tolerance (FR) and disease resistance (DR) - partly true in terms of varieties, but also reflected the effects of purposeful breeding and selection. The cultivars together - in comparison, showed balance, but in the highlighting, the differences of the 3 cultivar groups became significant. Indeed, the differences between the species of the former Hungarian cultural flora are clearly different (Surányi, 2004), which is also the case when comparing a large number of apricot (Surányi, 2014), plum (Surányi, 2015) and peach (Surányi, 2020) varieties.