Search

Published After
Published Before

Search Results

  • Some aspects of teaching the technology of designing and planning information systems in health care
    131-144
    Views:
    24
    In this article, we use the well-known ideas of technology in designing of new information systems in health care. We explain the principle that "making a health care application" "is more than writing a program", "it requires a strong co-operation and continuous contact" between the system analysts and users. The concept of the information system must contain the work of the whole system, which means that the planning and designing process should focus on the services, which really support the customer's functions. It has to be compatible with the earlier information systems based on several decade's experience. In this paper we use the most important elements of system theory. First of all we explain why it is important to take into account the behaviour of those, who operate the information system, and also their habits and way of thinking when planning then information system. We emphasise that it is importance to overview the whole information system and its functionality because it is a major aspect of the system planning.
    This paper can be used in university courses especially in teaching SDM, SSADM, Martin, etc. technologies for information system analysts, program designers and programmers.
  • Teaching probability theory by using a web based assessment system together with computer algebra
    81-95
    Views:
    33
    In the course of Maths Basics 2, the Faculty of Economic Science students of Kaposvár University learn the classical chapters of Probability Theory, namely random variables and the well-known probability distributions. Our teaching experiences show that students' achievement is weaker in case of problems concerning continuous random variables. From school year 2012/13 we have had an opportunity to take Maple TA, the web-based test- and assessment system, into the course of education. It is sufficient for the users of Maple TA to have a browser. Maple computer algebra system, which runs on the server, assesses students' answers in an intelligent way, and compares them with the answers that are considered correct by the teacher. In our presentation we introduce some elements of Maple TA system, the didactic considerations the test sheets were made by, as well as our research results concerning the use of Maple TA.
  • Teaching reliability theory with the Computer Algebra System Maxima
    45-75
    Views:
    23
    The use of the Computer Algebra System Maxima as a teaching aid in an MSc module in Reliability Theory is described here. Extracts from student handouts are used to show how the ideas in Reliability Theory are developed and how they are intertwined with their applications implemented in Maxima. Three themes from the lectures are used to illustrate this: (1) Normal Approximations, (2) Markov Modelling, (3) Laplace Transform Techniques.
    It is argued that Maxima is a good tool for the task, since: it is fairly easy to learn & use; it is well documented; it has extensive facilities; it is available for any operating system; and, finally, it can be freely downloaded from the Web. Maxima proves to be a useful tool even for Reliability research for certain tasks. This latter feature provides a seamless link from teaching to research – an important feature in postgraduate education.
  • Teaching centroids in theory and in practice
    67-88
    Views:
    30
    The main aim of this paper is to present an inquiry-based professional development activity about the teaching of centroids and to highlight some common misconceptions related to centroids. The second aim is to emphasize a major hindering factor in planning inquiry based teaching/learning activities connected with abstract mathematical notions. Our basic problem was to determine the centroid of simple systems such as: systems of collinear points, arbitrary system of points, polygons, polygonal shapes. The only inconvenience was that we needed practical activities where students could validate their findings and calculations with simple tools. At this point we faced the following situation: we have an abstract definition for the centroid of a finite system of points, while in practice we don't even have such systems. The same is valid for geometric objects like triangles, polygons. In practice we have triangular objects, polygonal shapes (domains) and not triangles, polygons. Thus in practice for validating the centroid of a system formed by 4,5,... points we also need the centroid of a polygonal shape, formed by an infinite number of points. We could use, of course, basic definitions, but our intention was to organize inquiry based learning activities, where students can understand fundamental concepts and properties before defining them.
  • Learning and teaching combinatorics with Sage
    389-398
    Views:
    36
    Learning Mathematics is not an easy task, since this subject works with especially abstract concepts and sophisticated deductions. Many students lose their interest in the subject due to lack of success. Computer algebra systems (CAS) provide new ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate concepts, deductions and algorithms and to make learning process more interesting especially in higher education. It is an even more efficient way to improve the learning process, if students can use the system themselves, which helps them to practice the curriculum.
    Sage is a free, open-source math software system that supports research and teaching algebra, analysis, geometry, number theory, cryptography, numerical computation, and related areas. I have been using it for several years to aid the instruction of Discrete Mathematics at Óbuda University. In this article I show some examples how representations provided by this system can help in teaching combinatorics.
  • Supporting the theory of math didactic using knowledge-measuring questions and analysis of the solutions
    1-16
    Views:
    25
    New or rediscovered results presented in this paper are the results of the analysis of the problem sets used in the two-tier system secondary school final examination in mathematics, a system that was introduced in Hungary in 2005.
    Many of the revealed problem arise in connection with misunderstanding the text of the problems. Causes of misinterpretation can be either that the text is lacking some important information, or that it should be interpreted not in word-to-word manner.
    Theses and their argumentations presented here refer partly on the new types of problems (tests, non-standard mathematical contents), and partly on improvement of learning-teaching process in topics of equations and approximations.
  • Teaching model-based testing
    1-17
    Views:
    1167

    Different testing methodologies should play an important role in the education of informatics. In the model-based testing (MBT) approach, the specification of the system is described with a formal model. This model can be used to revise the correctness of the specification and as a starting point for automatic test generation. The main problem with MBT is however, that there is a huge gap between theory and practice and that this approach has a high learning curve. To cope with these problems, current paper shows, how the MBT approach can be introduced to students through a small scale example.

    Subject Classification: P50

  • Concept systematization with concept maps in data modelling
    149-166
    Views:
    35
    An important goal of concept learning is that students can allocate concepts in the hierarchical system of concepts. In the data modelling course, first, we supported concept systematization with worksheets in which the students had to fill in the blank hierarchical figures of classification of the concepts or blank Venn diagrams describing the relationships between concepts. The hierarchical systems, however, are somewhat restricted to the description of connections. The filling in Venn diagrams did not deliver the expected result, so our attention turned to concept maps. In this paper we introduce the concept maps we drew. Then we evaluate the results of concept mapping survey conducted among students. The survey was done in three courses. We compare the results of our survey with the result of an earlier concept systematising survey.
  • Illustrated analysis of Rule of Four using Maple
    383-404
    Views:
    30
    Rule of Four, as a basic didactic principle, was formulated among the NCTM 2000 standards (see [14]) and since then it is quoted by numerous books and publications (see [4], [9], [12]). Practically we can say it is accepted by the community of didactic experts. The usage of the Rule of Four, however, has been realized mainly in the field of calculus, in fact certain authors restrict the wording of the principle to the calculus itself (e.g. [3]).
    Calculus is a pleasant field, indeed. A sequence of values of a function provides us with example for numeric representation, while the formula and the graph of the function illustrate symbolic and graphical representations, respectively. In the end by wording the basic features of the function on natural language we gain textual representation.
    This idyllic scene, however, becomes more complex when we leave the frame of calculus. In this paper we investigate the consequences of the usage of Rule of Four outside calculus. We discuss the different types of representations and show several examples which make the multiple features of representation evident. The examples are from different fields of mathematics and are created by the computer algebra system Maple, which turns out to be an excellent tool for illustration and visualization of the maim features of mathematical objects.
    Next we introduce the concept of basic representation and rational representation, which is considered as the mathematical notion of "didactic usable" or "didactic rational" representation. In the end we generalize the notion of numeric representation, which leads us a more widely usable didactic principle which can be considered as a generalization of Rule of Four.
  • Writing a textbook – as we do it
    185-201
    Views:
    13
    Recent surveys studying mathematics teaching show that there is a great variety in the level of mathematics teaching in Hungary. To increase efficiency (and decrease differences between schools) it is essential to create textbooks with new attitudes. The experiment we started after the PISA survey of 2000, produced a textbook that is new, in some sense even unusual in its attitude and methods. This paper presents the experiences we gained in the course of this work.