Search
Search Results
-
Mobile devices in Hungarian university statistical education
19-48Views:99The methodological renewal of university statistics education has been continuous for the last 30 years. During this time, the involvement of technology tools in learning statistics played an important role. In the Introduction, we emphasize the importance of using technological tools in learning statistics, also referring to international research. After that, we firstly examine the methodological development of university statistical education over the past three decades. To do this, we analyze the writings of statistics teachers teaching at various universities in the country. To assess the use of innovative tools, in the second half of the study, we briefly present an online questionnaire survey of students in tertiary economics and an interview survey conducted with statistics teachers.
Subject Classification: 97-01, 97U70, 87K80
-
The requirements in statistics education – comparison of PISA mathematical tasks and tasks from the mathematical textbooks in the field of statistics
263-275Views:47This work presents the results of the analysis of both PISA items and Croatian mathematical textbooks in the field of statistics.
The analysis shows that PISA's released statistics problems have in many ways different mathematical requirements from the requirements of textbook problems in the statistics chapters, with respect to the mathematical activities, complexity and in the forms of questions. The textbook analysis shows that mathematical examples and problems often require operation and interpretation skills on a reproductive or connections level. Statistics textbook problems are given in the closed-answer form. The results also show that while PISA puts strong emphasis on the statistics field, in the current Croatian curriculum this field is barely present. These discrepancies in requirements and portion of statistics activities surely affect the results of Croatian pupils on PISA assessment in the field of mathematical literacy. -
Straight line or line segment? Students’ concepts and their thought processes
327-336Views:127The article focuses on students’ understanding of the concept of a straight line. Attention is paid to whether students of various ages work with only part of a straight line shown or if they are aware that it can be extended. The presented results were obtained by a qualitative analysis of tests given to nearly 1,500 Czech students. The paper introduces the statistics of students’ solutions, and discusses the students’ thought processes. The results show that most of the tested students, even after completing upper secondary school, are not aware that a straight line can be extended. Finally, we present some recommendations for fostering the appropriate concept of a straight line in mathematics teaching.
Subject Classification: 97C30, 97D70, 97G40
-
Online tests in Comprehensive Exams – during and after the pandemic
77-93Views:120The Covid-19 pandemic accelerated the development of electronic (e-learning) assessment methods and forced their use worldwide. Many instructors and students had to familiarize themselves with the form of distance education. During and since Covid-19 in Hungary, at the Faculty of Engineering of the University of Debrecen, the written part of the Comprehensive Exam in Mathematics is organized in a computer lab of the university using an online test. Our goal is that the results of the tests may be as reliable as possible in terms of measuring the students’ knowledge, and thus the grades given based on the test results would be realistic. In this paper, we show the analysis of a sample written exam and compare the real exam results of students who were prepared for the comprehensive exam during Covid-19 and who have participated in face-to-face education since then. The tools provided by the Moodle system necessary for comparison are also presented.
Subject Classification: 97D40, 97D70, 97U50
-
Many paths lead to statistical inference: Should teaching it focus on elementary approaches or reflect this multiplicity?
259-293Views:100For statistics education, a key question is how to design learning paths to statistical inference that are elementary enough that the learners can understand the concepts and that are rich enough to develop the full complexity of statistical inference later on. There are two ways to approach this problem: One is to restrict the complexity. Informal Inference considers a reduced situation and refers to resampling methods, which may be completely outsourced to computing power. The other is to find informal ways to explore situations of statistical inference, also supported with the graphing and simulating facilities of computers. The latter orientates towards the full complexity of statistical inference though it tries to reduce it for the early learning encoun-ters. We argue for the informal-ways approach as it connects to Bayesian methods of inference and allows for a full concept of probability in comparison to the Informal Inference, which reduces probability to a mere frequentist concept and – based on this – restricts inference to a few special cases. We also develop a didactic framework for our analysis, which includes the approach of Tamás Varga.
Subject Classification: 97K10, 97K70, 97K50, 97D20
-
Understanding the spatiotemporal sample: a practical view for teaching geologist students
89-99Views:38One of the most fundamental concept of statistics is the (random) sample. Our experience – acquired during the years of undergraduate education – showed that prior to industrial practice, the students in geology (and, most probably, in many other non-mathematics oriented disciplines as well) are often confused by the possible multiple interpretation of the sample. The confusion increases even further, when samples from stationary temporal, spatial or spatio-temporal phenomena are considered. Our goal in the present paper is to give a viable alternative to this overly mathematical approach, which is proven to be far too demanding for geologist students.
Using the results of an environmental pollution analysis we tried to show the notion of the spatiotemporal sample and some of its basic characteristics. On the basis of these considerations we give the definition of the spatiotemporal sample in order to be satisfactory from both the theoretical and the practical points of view.