Search

Published After
Published Before

Search Results

  • Applications of methods of descriptive geometry in solving ordinary geometric problems
    103-115
    Views:
    30
    The importance of descriptive geometry is well-known in two fields. Spatial objects can be mapped bijectively onto a plane and then we can make constructions concerning the spatial objects. The other significance of descriptive geometry is that mathematical visual perception of objects in three-dimensional space can be improved by the aid of it. The topic of this paper is an unusual application of descriptive geometry. We may come across many geometric problems in mathematical competitions, in entrance examinations and in exercise books whose solution is expected in a classical way, however, the solution can be found more easily and many times more general than it is by the standard manner. We demonstrate some of these problems to encourage to use this geometric method. Understanding the solution requires very little knowledge of descriptive geometry, however, finding a solution needs to have some idea of descriptive geometry.
  • Packings in hyperbolic geometry
    209-229
    Views:
    21
    I am becoming older. That's why I am returning to my youth sins. "On revient toujours á ses premiers amoures". This sin was the noneuclidean hyperbolic geometry – especially the Poincaré model. I was teaching this kind of geometry over many years as well in highschool (Gymnasium) as for beginners at the university too.
    A lot of results concerning packings in hyperbolic geometry are proved by the Hungarian school around László Fejes Tóth. In this paper we construct very special packings and investigate the corresponding densities. For better understanding we are working in the Poincaré model. At first we give a packing of the hyperbolic plane with horodisks and calculate the density. In an analogous way then the hyperbolic space is packed by horoballs. In the last case the calculation of the density is a little bit difficult. Finally it turns out that in both cases the maximal density is reached.
  • Notes on the representational possibilities of projective quadrics in four dimensions
    167-177
    Views:
    12
    The paper deals with hyper-quadrics in the real projective 4-space. According to [1] there exist 11 types of hypersurfaces of 2nd order, which can be represented by 'projective normal forms' with respect to a polar simplex as coordinate frame. By interpreting this frame as a Cartesian frame in the (projectively extended) Euclidean 4-space one will receive sort of Euclidean standard types of hyper-quadrics resp., hypersurfaces of 2nd order: the sphere as representative of hyper-ellipsoids, equilateral hyper-hyperboloids, and hyper-cones of revolution. It seems to be worthwhile to visualize the "typical" projective hyper-quadrics by means of descriptive geometry in the (projectively extended) Euclidean 4-space using Maurin's method [4] or the classical (skew) axonometric mapping of that 4-space into an image plane.
  • The tools for developing a spatial geometric approach
    207-216
    Views:
    74

    Tamás Varga writes about the use of tools: "The rational use of tools - the colored bars, the Dienes set, the logical set, the geoboard, and some other tools - is an element of our experiment that is important for all students, but especially for disadvantaged learners." (Varga T. 1977) The range of tools that can be used well in teaching has grown significantly over the years. This paper compares spatial geometric modeling kits. Tamás Varga uses the possibilities of the Babylon building set available in Hungary in the 1970s, collects space and flat geometry problems for this (Varga T. 1973). Similarly, structured kits with significantly more options have been developed later, e.g. ZomeTool and 4D Frame. These tools are regularly used in the programs of the International Experience Workshop (http://www.elmenymuhely.-hu/?lang=en). Teachers, schools that have become familiar with the versatile possibilities of these sets, use them often in the optional and regular classes. We recorded a lesson on video where secondary students worked with the 4D Frame kit. We make some comments and offer some thoughts on this lesson.

    Subject Classification: 97G40, 97D40

  • Central axonometry in engineer training and engineering practice
    17-28
    Views:
    22
    This paper is concerned with showing a unified approach for teaching central and parallel projections of the space to the plane giving special emphasis to engineer training. The basis for unification is provided by the analogies between central axonometry and parallel axonometry. Since the concept of central axonometry is not widely known in engineering practice it is necessary to introduce it during the education phase. When teaching axonometries dynamic geometry software can also be used in an interactive way. We shall provide a method to demonstrate the basic constructions of various axonometries and use these computer applications to highlight their similarities. Our paper sheds light on the advantages of a unified approach in such areas of engineering practice as making hand drawn plans and using CAD-systems.
  • Forming the concept of congruence I.
    181-192
    Views:
    9
    Teaching isometries of the plane plays a major role in the formation of the congruence-concept in the Hungarian curricula.
    In the present paper I investigate the way the isometries of the plane are traditionally introduced in most of the textbooks, especially the influence of the representations on the congruence concept, created in the teaching process.
    I am going to publish a second part on this topic about a non-traditional approach (Forming the concept of congruence II). The main idea is to introduce the isometries of the two dimensional plane with the help of concrete, enactive experiences in the three dimensional space, using transparent paper as a legitimate enactive tool for building the concept of geometric motion. I will show that this is both in strict analogy with the axioms of 3-dimensional motion and at the same time close to the children's intuitive concept of congruence.