Published After
Published Before

Search Results

  • Guided Discovery in Hungarian Education Using Problem Threads: The Pósa Method in Secondary Mathematics Classrooms

    In Hungary, ‘guided discovery’ refers to instruction in which students learn mathematical concepts through task sequences that foster mathematical thinking. A prominent figure of guided discovery is Lajos Pósa, who developed his method to teach gifted students. Rather than teaching mathematics through thematic blocks, the Pósa Method employs webs of interconnected problem threads in which problems are built on each other, and different threads are presented simultaneously, so that students work on problems from multiple threads at the same time. It was found that this method has been successful as extracurricular training for gifted students since the 1980s; however since 2017, as part of an ongoing research, the method has been applied to mainstream curriculum in two public secondary school classrooms. The present paper examines the design and implementation processes of problem threads in this public secondary school context.

    Subject Classification: 97D40

  • Prime building blocks in the mathematics classroom

    This theoretical paper is devoted to the presentation of the manifold opportunities in using a little-known but powerful mathematical manipulative, the so-called prime building blocks, originally invented by two close followers of Tamás Varga, to support discovery of various concepts in arithmetic in middle school, including the Fundamental Theorem of Arithmetic or as it is widely taught, prime factorization. The study focuses on a teaching proposal to show how students can learn about greatest common divisor (GCD) and least common multiple (LCM) with understanding, and meanwhile addresses internal connections and levels of abstractness within elementary number theory. The mathematical and methodological background to understanding different aspects of the concept prime property are discussed and the benefits of using prime building blocks to scaffold students’ discovery are highlighted. Although the proposal was designed to be suitable for Hungarian sixth graders, mathematical context and indications for the use of the manipulative in both primary and high school are given.

    Subject Classification: F60, C30, E40, U60

  • Tamás Varga’s reform movement and the Hungarian Guided Discovery approach

    This paper presents Tamás Varga’s work focusing especially on the Hungarian Complex Mathematics Education reform project led by him between 1963 and 1978 and the underlying conception on mathematics education named “Guided Discovery approach”. In the first part, I describe Varga’s career. In the second part, I situate his reform project in its international and national historical context, including the international “New Math” movement and the “Guided Discovery” teaching tradition, something which is embedded in Hungarian mathematical culture. In the third part, I propose a didactic analysis of Varga’s conception on mathematics education, underlining especially certain of its characteristics which can be related to Inquiry Based Mathematics Education. Finally I briefly discuss Varga’s legacy today.

    Subject Classification: 97-03, 97B20, 97D20, 97D40, 97D50

  • Looking back on Pólya’s teaching of problem solving

    This article is a personal reflection on Pólya's work on problem solving, supported by a re-reading of some of his books and viewing his film Let Us Teach Guessing. Pólya's work has had lasting impact on the goals of school mathematics, especially in establishing solving problems (including non-routine problems) as a major goal and in establishing the elements of how to teach for problem solving. His work demonstrated the importance of choosing rich problems for students to explore, equipping them with some heuristic strategies and metacognitive awareness of the problem solving process, and promoting 'looking back' as a way of learning from the problem solving experience. The ideas are all still influential. What has changed most is the nature of classrooms, with the subsequent appreciation of a supporting yet challenging classroom where students work collaboratively and play an active role in classroom discussion.

    Subject Classification: 97D50, 97A30

  • A retrospective look at discovery learning using the Pósa Method in three Hungarian secondary mathematics classrooms

    While the Pósa Method was originally created for mathematical talent management through extracurricular activities, three "average" public secondary school classrooms in Hungary have taken part in a four-year experiment to implement the Pósa Method, which is based on guided discovery learning of mathematics. In this paper, we examine the students' and teachers' reflections on the Pósa Method, and how student perspectives have changed between their first and last year of high school. Overall, teachers and students had a positive experience with the Pósa Method. Furthermore, our research indicated that this implementation has met several objectives of the Pósa Method, including enjoyment of mathematics and autonomous thinking.

    Subject Classification: 97D40

  • Integrating elements of data science into high-school teaching: Naïve Bayes-classification algorithm and programming in Python

    Probability theory and mathematical statistics are traditionally one of the most difficult chapters of mathematics to teach. One of the authors, Péter Princz has experience in teaching various topics via computer programming of the problem at hand as a class activity. The proposed method is to involve programming as a didactic tool in hard-to-teach topics. The intended goal in this case is to implement a naïve Bayes-classifier algorithm in Python and demonstrate the machine-learning capabilities of it by applying it to a real-world dataset of edible or poisonous mushrooms. The students would implement the algorithm in a playful and interactive way. The proposed incremental development process aligns well with the spirit of Tamás Varga who considered computers as modern tools of experimental problem solving as early as in the 1960s.

    Subject Classification: 97D40, 97D50, 97K50, 97K99, 97M60, 97P40, 97P50, 97U50

  • Better understanding mathematics by algorithmic thinking and computer programming

    Tamás Varga’s mathematics education experiment covered not just mathematics, but also other related topics. In many of his works he clearly stated that computer science can support the understanding of mathematics as much as mathematics supports informatics. On the other hand, not much later than the introduction of the new curriculum in 1978, personal computers started to spread, making it possible to teach informatics in classes and in extracurricular activities. Varga’s guided discovery approach has a didactic value for other age groups as well, not only in primary school. Its long-lasting effect can be observed even in present times. Having reviewed several educational results in the spirit of Tamás Varga, we have decided to present an extracurricular course. It is an open study group for age 12-18. Students solve problems by developing Python programs and, according to our experiences, this results in a deeper understanding of mathematical concepts.

    Subject Classification: 97B10, 97B20, 97D50, 97N80, 97P20, 97P30, 97P40, 97P50, 97U70

  • "How to be well-connected?" An example for instructional process planning with Problem Graphs

    Teachers’ design capacity at work is in the focus of didactical research worldwide, and fostering this capacity is unarguably a possible turning point in the conveyance of mathematical knowledge. In Hungary, the tradition hallmarked by Tamás Varga is particularly demanding towards teachers as they are supposed to be able to plan their long-term processes very carefully. In this contribution, an extensive teaching material designed in the spirit of this tradition will be presented from the field of Geometry. For exposing its inner structure, a representational tool, the Problem Graph is introduced. The paper aims to demonstrate that this tool has potential for analyzing existing resources, helping teachers to reflect on their own preparatory and classroom work, and supporting the creation of new designs.

    Subject Classification: 97D40, 97D50, 97D80, 97G10, 97U30