Search
Search Results
-
Many paths lead to statistical inference: Should teaching it focus on elementary approaches or reflect this multiplicity?
259-293Views:76For statistics education, a key question is how to design learning paths to statistical inference that are elementary enough that the learners can understand the concepts and that are rich enough to develop the full complexity of statistical inference later on. There are two ways to approach this problem: One is to restrict the complexity. Informal Inference considers a reduced situation and refers to resampling methods, which may be completely outsourced to computing power. The other is to find informal ways to explore situations of statistical inference, also supported with the graphing and simulating facilities of computers. The latter orientates towards the full complexity of statistical inference though it tries to reduce it for the early learning encoun-ters. We argue for the informal-ways approach as it connects to Bayesian methods of inference and allows for a full concept of probability in comparison to the Informal Inference, which reduces probability to a mere frequentist concept and – based on this – restricts inference to a few special cases. We also develop a didactic framework for our analysis, which includes the approach of Tamás Varga.
Subject Classification: 97K10, 97K70, 97K50, 97D20
-
Die Stichprobe als ein Beispiel dafür, wie im Unterricht die klassische und die bayesianische Auffassung gleichzeitig dargestellt werden kann
133-150Views:30Teaching statistics and probability in the school is a new challenge of the Hungarian didactics. It means new tasks also for the teacher- and in service-teacher training. This paper contains an example to show how can be introduced the basic notion of the inference statistics, the point- and interval-estimation by an elementary problem of the public pole. There are two concurrent theories of the inference statistics the so called classical and the Bayesian Statistics. I would like to argue the importance of the simultaneously introduction of both methods making a comparison of the methods. The mathematical tool of our elementary model is combinatorial we use some important equations to reach our goal. The most important equation is proved by two different methods in the appendix of this paper. -
Statistical inference in school
265-273Views:24The paper explains a classroom example for convincing students about the utility and applicability of statistical methods in learning getting people's opinions. The emphasis is on convincing instead of proving. The necessary statistical data may be obtained from the Internet as a digital text.