Search

Published After
Published Before

Search Results

  • The application of modelling tasks in the classroom – why and how? with reflections on an EU teacher training course
    231-244
    Views:
    34
    The aim of the article is to present the concept of mathematical modelling in the classroom. LEMA (Learning and Education in and through Modelling and Applications) was an EU Comenius funded project in which mathematics educators from six countries worked to produce materials to support teachers' professional development. A group of voluntary Hungarian mathematics teachers were taught modelling for a year and we were and still are given feedback continously. The article leads us from the general concept of mathematical modelling to its practice in the classroom. It presents difficulties that teachers have to face when doing modelling lessons and their students' reactions are also mentioned. We present sample tasks from the material of the teacher training course as well as tasks that were created by the participants.
  • CAS as a didactical challenge
    379-393
    Views:
    33
    The paper starts with the discussion of a concept of general mathematics education (mathematics education for everyone). This concept views the focus of teaching mathematics in the reduction of the demands in the field of operative knowledge and skills as well as in an increase of the demands in the fields of basic knowledge and reflection. The consequences of this concept are didactically challenging for the use of Computer Algebra Systems (CAS) in the teaching of mathematics. By reducing the operative work we reduce exactly that field in which the original potential of CAS lies. It is shown that in such maths classes the main focus of CAS is on their use as a pedagogical tool, namely as support for the development of basic knowledge and reflection as well as a model of communication with mathematical experts.
  • Mathematische Bildung im Klagenfurter Doktorand(inn)enkolleg
    67-84
    Views:
    30
    In 2003 we set up a programme for PhD-studies ("Doktorand(inn)enkolleg") at the University of Klagenfurt which should promote and support PhD-studies in the field of mathematics education.Within this programme it is worked on the topic "general mathematics education" from different perspectives.
    In the first part of this paper intentions, the fields of work and the form of organisation are briefly demonstrated. The second and main part considers in detail the work in one of the four fields of work, and finally, the third and last part presents some experiences with regard to the contents as well as general ones.
  • Herschel's heritage and today's technology integration: a postulated parallel
    419-430
    Views:
    26
    During the early 20th century, advocacy of a range of mathematical technologies played a central part in movements for the reform of mathematical education which emphasised ‘practical mathematics' and the ‘mathematical laboratory'. However, as these movements faltered, few of the associated technologies were able to gain and maintain a place in school mathematics. One conspicuous exception was a technology, originally championed by the mathematician Herschel, which successfully permeated the school mathematics curriculum because of its:
    • Disciplinary congruence with influential contemporary trends in mathematics.
    • External currency in wider mathematical practice beyond the school.
    • Adoptive facility of incorporation in classroom practice and curricular activity.
    • Educational advantage of perceived benefits outweighing costs and concerns.
    An analogous perspective is applied to the situation of new technologies in school mathematics in the early 21st century. At a general level, the cases of calculators and computers are contrasted. At a more specific level, the educational prospects of CAS and DGS are assessed.
  • Zur Veränderung des Stellenwertesvon Beweisen im Mathematikunterricht - eine Analyse von ungarischen Abiturprüfungenzwischen 1981 und 2020
    35-55
    Views:
    71

    Proofs are not just an essential, crucial part of mathematics as a science, they also have a long tradition in Hungarian mathematics classrooms. However, the school in general and, mathematics education in particular, have been changed in the last few decades enormously, including the final secondary school examinations in mathematics. The current paper's main goal is to answer the question, how has been changed the weight and the content of reasoning and especially proving tasks in the relevant examinations.

    Subject Classification: 97E54, 97D64, 97U44

  • A proposal for an IOI Syllabus
    193-216
    Views:
    55
    The International Olympiad in Informatics (IOI) is the premier competition in computing science for secondary education. The competition problems are algorithmic in nature, but the IOI Regulations do not clearly define the scope of the competition. The international olympiads in physics, chemistry, and biology do have an official syllabus, whereas the International Mathematical Olympiad has made the deliberate decision not to have an official syllabus. We argue that the benefits of having an official IOI Syllabus outweigh the disadvantages. Guided by a set of general principles we present a proposal for an IOI Syllabus, divided into four main areas: mathematics, computing science, software engineering, and computer literacy.
  • Über einen allgemeinen Übungsbegriff bei verschiedenen Unterrichtsmethoden in der Planung des Mathematikunterrichtes
    175-201
    Views:
    37
    Practice is important in the education of mathematics but is neclected in the didactic of mathematics. One of the reasons is that practice is often defined too "narrowly" and the definitions of practice have in most cases an obscure background theory. In the article a general definition of practice is given, which – in contrast to the usual definitions – views practice from the point of the pupils (practice means activity of pupils). By utilising this definition consequences will be drawn. These consequences serve as for the more exact planning of practice in education as for the analysis of the dependency of practice from teachingsmethods.
    In the second part an example will be presented for planning together practice and lesson, in two different teachingsmethods (traditionel, problemsolving). The analysis of both worksheets (one for each method, identical teachingsmaterial) was made on the basis of authors practise in lessons i.e. her own concepts and the experience with pupils at a class 5. On the basis of the expectable solutions is specified – using a criteriacatalog – what was practised.
    The analysis of practice leads further to the examination of above mentioned dependency from teachingsmethods.
  • Probabilistic thinking, characteristic features
    13-36
    Views:
    35
    This paper is the first step in a series of a general research project on possible development in probability approach. Our goal is to check with quantitative methods how correct our presumptions formulated during our teaching experience were. In order to get an answer to this question, we conducted a survey among third-year students at our college about their general and scientific concepts as well as about the way they typically think.