Search
Search Results
-
Comparing various functions of the divisors of an integer in different residue classes
247-258Views:33The main goal of this paper is to investigate some problems related to the distribution of the divisors of a number in different residue classes. We study these questions modulo 3, and use mostly just elementary number theory. In some special cases, we demonstrate how this problem is related to other fields of maths, especially to combinatorics. Since the author is also a secondary school teacher, we use elementary methods that can be discussed in secondary school, mainly within the framework of group study sessions or in special maths classes. We do think that the investigation of these types of questions can motivate children to find their own way to create their own questions, and to get a deeper insight into problem solving by these experimentations. -
Wichtige Momente aus der ungarischen Geschichte des Analysisunterrichts
57-76Views:76Törner et al. (2014) paper gives an outstanding review about teaching analysis at high school level in (Western) Europe. We tried to extend this paper with some results from the Hungarian Math History (Beke and Rátz 1897-1924, after second World War 1949-1960, the current situation-first of all based on schoolbooks, and we also included an experiment from 1984-1989 by E. Deák, which was interrupted and partially forgotten). In summary, this paper deals with the turning points of the brief history of teaching secondary school analysis in the XXth century in Hungary, including some conclusions at the end.
Subject Classification: 97A30, 97C30, 97D30, 97E50, 97I20, 97I40, 97U20
-
Some logical issues in discrete mathematics and algorithmic thinking
243-258Views:99The role of logic in mathematics education has been widely discussed from the seventies and eighties during the “modern maths period” till now, and remains still a rather controversial issue in the international community. Nevertheless, the relevance of discrete mathematics and algorithmic thinking for the development of heuristic and logical competences is both one of the main points of the program of Tamás Varga, and of some didactic teams in France. In this paper, we first present the semantic perspective in mathematics education and the role of logic in the Hungarian tradition. Then, we present insights on the role of research problems in the French tradition. Finely, we raise some didactical issues in algorithmic thinking at the interface of mathematics and computer science.
Subject Classification: 97E30
-
On some problems on composition of arithmetic functions
161-181Views:19The main goal of this paper is to investigate some problems related to the commutativity of the composition of arithmetic functions. The concept of commutativity arises many times in high school maths, so it is natural to study the composition of functions, namely the equation f(g(n)) = g(f(n)), where f and g are such well known arithmetic functions as d(n), φ(n), σ(n), ω(n), or Ω(n). We study various aspects of solvability: can we exhibit infinitely many solutions; can we determine every solution; can we find suitable values in the range of both functions f and g for which the equation is, or is not solvable, respectively. We need just the basic facts about the above functions,and we use only elementary methods in the proofs. We present some interesting questions, their solutions, and raise some unsolved problems. We found that this topic can be discussed well in secondary school, mainly within the framework of group study sessions as we had some classes with a group of kids in 9th grade. We summarize the experiences of this experiment in the last section. -
Some Pythagorean type equations concerning arithmetic functions
157-179Views:61We investigate some equations involving the number of divisors d(n); the sum of divisors σ(n); Euler's totient function ϕ(n); the number of distinct prime factors ω(n); and the number of all prime factors (counted with multiplicity) Ω(n). The first part deals with equation f(xy) + f(xz) = f(yz). In the second part, as an analogy to x2 + y2 = z2, we study equation f(x2) + f(y2) = f(z2) and its generalization to higher degrees and more terms. We use just elementary methods and basic facts about the above functions and indicate why and how to discuss this topic in group study sessions or special maths classes of secondary schools in the framework of inquiry based learning.
Subject Classification: 97F60, 11A25
-
Teaching probability theory by using a web based assessment system together with computer algebra
81-95Views:37In the course of Maths Basics 2, the Faculty of Economic Science students of Kaposvár University learn the classical chapters of Probability Theory, namely random variables and the well-known probability distributions. Our teaching experiences show that students' achievement is weaker in case of problems concerning continuous random variables. From school year 2012/13 we have had an opportunity to take Maple TA, the web-based test- and assessment system, into the course of education. It is sufficient for the users of Maple TA to have a browser. Maple computer algebra system, which runs on the server, assesses students' answers in an intelligent way, and compares them with the answers that are considered correct by the teacher. In our presentation we introduce some elements of Maple TA system, the didactic considerations the test sheets were made by, as well as our research results concerning the use of Maple TA. -
Analysis of a problem in plane geometry discussed in an 11th grade group study session
181-193Views:30The main aim of this paper is to show those strategies and proof methods we try to teach in secondary maths education through an interesting geometric problem: Find a relation for the sides of a triangle where an angle is the double of another angle. Is the converse also true? Is it possible to generalize the problem? We try to answer these questions while discussing the upcoming difficulties in detail and presenting more possible solutions. Hopefully the paper can be successfully used in study group sessions and problem solving seminars in secondary schools. -
CAS as a didactical challenge
379-393Views:36The paper starts with the discussion of a concept of general mathematics education (mathematics education for everyone). This concept views the focus of teaching mathematics in the reduction of the demands in the field of operative knowledge and skills as well as in an increase of the demands in the fields of basic knowledge and reflection. The consequences of this concept are didactically challenging for the use of Computer Algebra Systems (CAS) in the teaching of mathematics. By reducing the operative work we reduce exactly that field in which the original potential of CAS lies. It is shown that in such maths classes the main focus of CAS is on their use as a pedagogical tool, namely as support for the development of basic knowledge and reflection as well as a model of communication with mathematical experts.