Search
Search Results
-
Decomposition of triangles into isosceles triangles II: complete solution of the problem by using a computer
275-300Views:149We solve an open decomposition problem in elementary geometry using pure mathematics and a computer programme, utilizing a computer algebra system. -
An examination of descriptive statistical knowledge of 12th-grade secondary school students - comparing and analysing their answers to closed and open questions
63-81Views:173In this article, we examine the conceptual knowledge of 12th-grade students in the field of descriptive statistics (hereafter statistics), how their knowledge is aligned with the output requirements, and how they can apply their conceptual knowledge in terms of means, graphs, and dispersion indicators. What is the proportion and the result of their answers to (semi-)open questions for which they have the necessary conceptual knowledge, but which they encounter less frequently (or not at all) in the classroom and during questioning? In spring 2020, before the outbreak of the pandemic in Hungary, a traditional-classroom, “paper-based” survey was conducted with 159 graduating students and their teachers from 3 secondary schools. According to the results of the survey, the majority of students have no difficulties in solving the type of tasks included in the final exam. Solving more complex, open-ended tasks with longer texts is more challenging, despite having all the tools to solve them, based on their conceptual knowledge and comprehension skills. A valuable supplement to the analysis and interpretation of the results is the student attitudes test, also included in the questionnaire.
Subject Classification: 97K40, 97-11, 97D60
-
A computational thinking problem-thread for grade 7 students and above from the Pósa method
101-110Views:226Lajos Pósa has been developing his “learning through discovery” (Győri & Juhász, 2018) method since 1988. His weekend math camps are focused on fostering problem-solving skills and high-level mathematical-thinking skills in gifted students from grades 7 to 11. One of the core aspects of the method is the structure of the problems, all problems are part of a complex, intertwined, and rich network. In this article we analyze a computational thinking problem-thread and its role in the camps’s network of problems (Gosztonyi, 2019), and show some aspects of the method. The insights gained using this method can be useful in other contexts. The possible adaptation of the method to secondary and high schools is briefly discussed as well.
Subject Classification: 97D40
-
Teaching Gröbner bases
57-76Views:113In this article we offer a demonstration of how the StudentGroebner package, a didactic oriented Maple package for Gröbner basis theory, could assist the teaching/learning process. Our approach is practical. Instead of expounding on deep didactic theory we simply give examples on how we imagine experimental learning in classroom. The educational goal is to prepare the introduction of two sophisticated algorithms, the division algorithm and Buchberger's algorithm, by gathering preliminary knowledge about them. -
On the fixed points of an affine transformation: an elementary view
101-110Views:182This note shows how the fixed points of an affine transformation in the plane can be constructed by an elementary geometric method. The approach presented here also shows how the affinities of the plane can be classified with the help of their fixed points. -
Models of impulsive phenomena: experiences with writing an interactive textbook
333-345Views:82"Take the textbook to computer" – is said quite often. Would it be so easy? If we start such a work, we meet a lot of trouble very soon. A book stored on a CD, read on the screen of computer and containing some hyperlinks does not become automatically electronic textbook. There are difficulties also in writing merely an electronic attachment to a classical book. In this paper, we deal with some important features (actually important from our point of view) of interactive mathematics textbooks, arising mathematical, didactical and technical problems. The "principles" are illustrated with examples taken from the book-CD "Models of Impulsive Phenomena". -
Programming Theorems and Their Applications
213-241Views:221One of the effective methodological approaches in programming that supports the design and development of reliable software is analogy-based programming. Within this framework, the method of problem reduction plays a key role. Reducing a given problem to another one whose solving algorithm is already known can be made more efficient by the application of programming theorems. These represent proven, abstract solutions – in a general form – to some of the most common problems in programming. In this article, we present six fundamental programming theorems as well as pose five sample problems. In solving these problems, all six programming theorems will be applied. In the process of reduction, we will employ a concise specification language. Programming theorems and solutions to the problems will be given using the structogram form. However, we will use pseudocodes as descriptions of algorithms resembling their actual implementation in Python. A functional style solution to one of the problems will also be presented, which is to illustrate that for the implementation in Python, it is sufficient to give the specification of the problem for the design of the solution. The content of the article essentially corresponds to that of the introductory lectures of a course we offered to students enrolled in the Applied Mathematics specialization.
Subject Classification: D40
-
On the nine-point conic of hyperbolic triangles
195-211Views:25In the Cayley–Klein model, we review some basic results concerning the geometry of hyperbolic triangles. We introduce a new definition of the circumcircle of a hyperbolic triangle, guaranteed to exist in every case, and describe its main properties. Our central theorem establishes, by means of purely elementary projective geometric arguments, that a hyperbolic triangle has a nine-point conic if and only if it is a right triangle.
Subject Classification: 51M09
-
The study of sequences defined by a first order recursion by means of a pocket calculator
231-240Views:106This paper will present the way we can use a simple pocket calculator to teach mathematics. Namely, a pocket calculator can be very useful to study the properties of sequences defined by first order recursion (e.g. monotonicity, boundedness and convergence) and to gain a deeper understanding. -
The influence of computer on examining trigonometric functions
111-123Views:103In this paper the influence of computer on examining trigonometric functions was analyzed throughout the results questionnaire. The students, as usual, had to examine two trigonometric functions, both were given with the appropriate instructions. Three groups were tested. Two of those three groups were prepared with the help of computer and the third one was taught without computer. From the analysis of the questionnaire it follows that the computer has a great influence on understanding of the connections between the graph and very complex calculations. -
Sage and scribe – asymmetrical pair work that can easily fit into any mathematics lesson, yet still have cooperative benefits
133-164Views:498This article uses a case study experiment to learn the characteristics of a pair work, called the sage and scribe method (Kagan, 2008). We also wished to explore the positive and negative effects of the systematic application of this single cooperative element without any other structural changes during the lessons. In the case study experiment, we asked two teachers, accustomed to traditional frontal teaching methods, to substitute individual work tasks in their standard lesson plans with the sage and scribe method. Our experiments indicate that this method wastes insignificant time, requires little extra effort on the part of the teacher, yet has many of the positive effects of cooperative methods: in our experiments, students received immediate feedback, corrected each other’s mistakes, learned from each other in meaningful discussions and engaged in collaborative reasoning to address emerging problems.
Subject Classification: 97D40
-
Linear clause generation by Tableaux and DAGs
109-118Views:107Clause generation is a preliminary step in theorem proving since most of the state-of-the-art theorem proving methods act on clause sets. Several clause generating algorithms are known. Most of them rewrite a formula according to well-known logical equivalences, thus they are quite complicated and produce not very understandable information on their functioning for humans. There are other methods that can be considered as ones based on tableaux, but only in propositional logic. In this paper, we propose a new method for clause generation in first-order logic. Since it inherits rules from analytic tableaux, analytic dual tableaux, and free-variable tableaux, this method is called clause generating tableaux (CGT). All of the known clause generating algorithms are exponential, so is CGT. However, by switching to directed acyclic graphs (DAGs) from trees, we propose a linear CGT method. Another advantageous feature is the detection of valid clauses only by the closing of CGT branches. Last but not least, CGT generates a graph as output, which is visual and easy-to-understand. Thus, CGT can also be used in teaching logic and theorem proving. -
Looking back on Pólya’s teaching of problem solving
207-217Views:423This article is a personal reflection on Pólya's work on problem solving, supported by a re-reading of some of his books and viewing his film Let Us Teach Guessing. Pólya's work has had lasting impact on the goals of school mathematics, especially in establishing solving problems (including non-routine problems) as a major goal and in establishing the elements of how to teach for problem solving. His work demonstrated the importance of choosing rich problems for students to explore, equipping them with some heuristic strategies and metacognitive awareness of the problem solving process, and promoting 'looking back' as a way of learning from the problem solving experience. The ideas are all still influential. What has changed most is the nature of classrooms, with the subsequent appreciation of a supporting yet challenging classroom where students work collaboratively and play an active role in classroom discussion.
Subject Classification: 97D50, 97A30
-
Dressed up problems - the danger of picking the inappropriate dress
77-94Views:154Modelling and dressed-up problems play an inevitably unavoidable role in mathematics education. In this study we would like to point out how dangerous is it to dress up mathematical problems. We go back to the principle of De Lange: The problem designer is not only dressing up the problem, but he is the solution designer, as well. We show three examples selected from Hungarian high school textbooks where the intended solution does not solve the problem, because the dressing changes the context and changes the problem itself. -
Teaching student teachers: various components of a complex task
55-72Views:74In this paper we summarize various aspects of teacher training and teaching student teachers (mainly concerning teachers of upper secondary school and High school). We stress several hints and recommendations to better achieve the obviously important aim: they should learn doing, understanding and teaching mathematics!
Of course, our view is particularly influenced by European traditions, but we think most of them equally apply to teacher training and teaching student teachers elsewhere. Neither is the paper meant to give an all sided overview about the problem field of teacher education as a whole, nor does it contain provocative, completely new ideas. We just want to describe our view of some aspects, based primarily on our personal experience in the mentioned field. -
"On the way" to the function concept - experiences of a teaching experiment
17-39Views:175Knowing, comprehending and applying the function concept is essential not only from the aspect of dealing with mathematics but with several scientific fields such as engineering. Since most mathematical notions cannot be acquired in one step (Vinner, 1983) the development of the function concept is a long process, either. One of the goals of the process is evolving an "ideal" concept image (the image is interrelated with the definition of the concept). Such concept image plays an important role in solving problems of engineering. This study reports on the beginning of a research aiming the scholastic forming of the students' function concept image i.e. on the experiences of a "pilot" study. By the experiment, we are looking for the answer of the following question: how can the analysis of such function relations be built into the studied period (8th grade) of the evolving process of the function concept that students meet in everyday life and also in engineering life?
Subject Classification: D43, U73
-
Teaching XML
317-335Views:100The author has been teaching XML at the Faculty of Informatics, University of Debrecen since the end of the nineties. This paper gives an overview of XML technology from an educators viewpoint that is based on the experience that the author has gained teaching XML over the years. A detailed description of the XML course is provided. Methodological issues are also discussed. -
A didactic analysis of merge sort
195-210Views:115Due to technical difficulties, educators teaching merge sort often avoid the analysis of the cost in the general and average cases. Using basic discrete mathematics, elementary real analysis and mathematical induction, we propose a self-contained derivation of bounds αn log_2 n + βn + γ in all cases. Independent of any programming language or pseudo-code, supported by intuitive figures, it is suitable for informatics students interested in the analysis of algorithms. It is also a good exercise in showing that induction allows us to actually discover constants, instead of simply checking them a posteriori. -
The mathematics textbook as an aid to differentiation: a first Hungarian example
35-53Views:81Differentiation is a way of teaching where each student is taught according to his/her personal needs. This technique is not widely used in Hungary yet, although this would be necessary due to the introduction of the two-level final examination and to a growing concern for equal opportunities and integrated teaching. One of the most significant aids to differentiation is an appropriate textbook, and that is why a group of professionals wrote a set of textbooks that supports this technique. The paper examines the requirements for a differentiated textbook, and the extent to which the textbook in question meets them. -
Potential, actual and practical variations for teaching functions: cases study in China and France
157-166Views:167This contribution is based on two major hypotheses: task design is the core of teachers’ work, and variation is the core of task design. Taking into account variation in task design has a profound theoretical foundation in China and France. Developing my PhD with two co-supervisors, in China and France, I wish to seize this opportunity for constructing an analytic model of “teaching mathematics through variation” making profit of this theoretical diversity. This model distinguishes between potential variation and practical variation and is based on the process of transforming potential variation into actual variation, and of using practical variation for rethinking potential variation. The design of this model is based both on theoretical networking, and on case studies, in France and China. In this contribution, we will focus on a critical aspect in the two cases, from potential to practical variation.
Subject Classification: 97-06
-
How the derivative becomes visible: the case of Daniel
81-97Views:118This paper reports how an advanced 11th-grade student (Daniel) perceived the derivative from a graph of a function at a task-based interview after a short introduction to the derivative. Daniel made very impressive observations using, for example, the steepness and the increase of a graph as well as the slope of a tangent as representations of the derivative. He followed the graphs sequentially and, for example, perceived where the derivative is increasing/decreasing. Gestures were an essential part of his thinking. Daniel's perceptions were reflected against those of a less successful student reported previously [Hähkiöniemi, NOMAD 11, no. 1 (2006)]. Unlike the student of the previous study, Daniel seemed to use the representations transparently and could see the graph as a representation of the derivative. -
Our digital education habits in the light of their environmental impact: the role of green computing in education
69-86Views:229With the increasing use of IT tools, the environmental impacts they generate have also increased. Education is increasingly relying on digital tools to become a major emitter of CO2 itself. Therefore, the task of education is to teach future generations how to use IT tools efficiently while being environmentally aware. In addition to some forms of green computing, we show the level and ratio of those teachers who have corresponding IT knowledge in the Hungarian education. In this study, we present the justification of the problem through a case study, which estimates the Internet traffic of a website streaming popular educational resources. In addition, we will examine the extent to which national and international educational organization and guidance documents address the development of digital environmentally aware thinking. Based on the content of this study, we suggest some considerations for content developers to decide if they really need to create the digital content.
Subject Classification: 97P99, 94-06, 94-02
-
Teaching probability theory by using a web based assessment system together with computer algebra
81-95Views:105In the course of Maths Basics 2, the Faculty of Economic Science students of Kaposvár University learn the classical chapters of Probability Theory, namely random variables and the well-known probability distributions. Our teaching experiences show that students' achievement is weaker in case of problems concerning continuous random variables. From school year 2012/13 we have had an opportunity to take Maple TA, the web-based test- and assessment system, into the course of education. It is sufficient for the users of Maple TA to have a browser. Maple computer algebra system, which runs on the server, assesses students' answers in an intelligent way, and compares them with the answers that are considered correct by the teacher. In our presentation we introduce some elements of Maple TA system, the didactic considerations the test sheets were made by, as well as our research results concerning the use of Maple TA. -
Cultivating algorithmic thinking: an important issue for both technical and HUMAN sciences
107-116Views:119Algorithmic thinking is a valuable skill that all people should master. In this paper we propose a one-semester, algorithm-oriented computer science course for human science students. According to our experience such an initiative could succeed only if the next recipe is followed: interesting and practical content + exciting didactical methods + minimal programming. More explicitly, we suggest: (1) A special, simple, minimal, pseudo-code like imperative programming language that integrates a graphic library. (2) Interesting, practical and problem-oriented content with philosophical implications. (3) Exciting, human science related didactical methods including art-based, inter-cultural elements.