Search

Published After
Published Before

Search Results

  • Problemorientierung im Mathematikunterricht – ein Gesichtspunkt der Qualitätssteigerung
    251-291
    Views:
    157
    The aim of this article is to give a synopsis of problem orientation in mathematics education and to stimulate the discussion of the development and research about problem-orientated mathematics teaching. At the beginning we present historical viewpoints of problem orientation and their connection with recent theories of cognition (constructivism). Secondly we give characterizations of concepts that stand in the context of problem-orientation and discuss different forms of working with open problems in mathematics teaching. Arguments for more problem orientation in mathematics education will be discussed afterwards. Since experience shows that the implementation of open problems in classroom produces barriers, we then discuss mathematical beliefs and their role in mathematical learning and teaching. A list of literature at the end is not only for references but also can be used to further research.
    Zusammenfassung. Ziel des Beitrags ist es, eine Synopsis in Bezug auf Problemorientierung im Mathematikunterricht zu geben und die Diskussion bezüglich Entwicklung und Forschung eines problemorientierten Mathematikunterrichts zu stimulieren. Als Erstes werden historische Gesichtspunkte von Problemorientierung und deren Verkn üpfung mit neueren Erkenntnistheorien (Konstruktivismus) vorgestellt. Zweitens werden Erläuterungen zu Begriffen, die im Kontext von Problemorientierung stehen, gegeben und verschiedene Ausprägungen der Behandlung offener Probleme im Mathematikunterricht diskutiert. Argumente für eine stärkere Berücksichtigung von Problemorientierung im Mathematikunterricht werden danach erörtert. Auf Barrieren bei der Implementierung von offenen Problemen im Unterricht, die durch mathematische Beliefs (Vorstellungen, Überzeugungen) geprägt sind, wird zum Schluss eingegangen. Die abschließend aufgeführte Literaturliste dient nicht nur dem Beleg der Zitate, sondern kann auch zu weiterer Vertiefung genutzt werden.
  • Looking back on Pólya’s teaching of problem solving
    207-217
    Views:
    469

    This article is a personal reflection on Pólya's work on problem solving, supported by a re-reading of some of his books and viewing his film Let Us Teach Guessing. Pólya's work has had lasting impact on the goals of school mathematics, especially in establishing solving problems (including non-routine problems) as a major goal and in establishing the elements of how to teach for problem solving. His work demonstrated the importance of choosing rich problems for students to explore, equipping them with some heuristic strategies and metacognitive awareness of the problem solving process, and promoting 'looking back' as a way of learning from the problem solving experience. The ideas are all still influential. What has changed most is the nature of classrooms, with the subsequent appreciation of a supporting yet challenging classroom where students work collaboratively and play an active role in classroom discussion.

    Subject Classification: 97D50, 97A30

  • Analysis of fixations while solving a test question related to computer networks
    111-129
    Views:
    111
    Examination of human eye move is useful because by eye tracking and definition of visual attention, may making conclusions about hidden cognitive processes which are harder to examine. With human eye tracking, visual attention can be defined, therefore hidden cognitive processes may be revealed and examined. The goal of the research, presented in this article, to analyze the so called fixation eye movement parameter recorded during a test question related to computer networks. The paper present what significant differences detected between pre-knowledge and the number of fixations using statistical analysis. The results show a moderately relationship between previous knowledge and fixation counts.
  • Categorising question question relationships in the Pósa method
    91-100
    Views:
    216

    The doctoral research of the author – with a reverse didactic engineering (RDE) methodology – aims at reconstructing the theoretical background of the ‘intuitively developed’ Pósa method for inquiry-based learning mathematics (IBME) in Hungarian talent education. Preliminary results of the second step of this theorization is presented, which applies tools of the Anthropological Theory of the Didactic (ATD). A model is proposed for categorizing question-question relationship with 3 categories: helping question, follow-up question and question of a kernel. The first two of them are claimed to represent two types (relevant or not) of generating-derived questions relationship. The model is also a prospective tool for connected task- and curriculum design and analysis within IBME development.

    Subject Classification: 97D20, 97D40, 97D50, 97E50, 97K30

  • Online tests in Comprehensive Exams – during and after the pandemic
    77-93
    Views:
    241

    The Covid-19 pandemic accelerated the development of electronic (e-learning) assessment methods and forced their use worldwide. Many instructors and students had to familiarize themselves with the form of distance education. During and since Covid-19 in Hungary, at the Faculty of Engineering of the University of Debrecen, the written part of the Comprehensive Exam in Mathematics is organized in a computer lab of the university using an online test. Our goal is that the results of the tests may be as reliable as possible in terms of measuring the students’ knowledge, and thus the grades given based on the test results would be realistic. In this paper, we show the analysis of a sample written exam and compare the real exam results of students who were prepared for the comprehensive exam during Covid-19 and who have participated in face-to-face education since then. The tools provided by the Moodle system necessary for comparison are also presented.

    Subject Classification: 97D40, 97D70, 97U50

  • The application of modelling tasks in the classroom – why and how? with reflections on an EU teacher training course
    231-244
    Views:
    215
    The aim of the article is to present the concept of mathematical modelling in the classroom. LEMA (Learning and Education in and through Modelling and Applications) was an EU Comenius funded project in which mathematics educators from six countries worked to produce materials to support teachers' professional development. A group of voluntary Hungarian mathematics teachers were taught modelling for a year and we were and still are given feedback continously. The article leads us from the general concept of mathematical modelling to its practice in the classroom. It presents difficulties that teachers have to face when doing modelling lessons and their students' reactions are also mentioned. We present sample tasks from the material of the teacher training course as well as tasks that were created by the participants.
  • Darstellungen und Vorstellungen und ihre Bedeutung für eine wirksame Metakognition beim Problemlösen und Begründen
    195-220
    Views:
    140
    Metacognition has one of the highest effect sizes concerning successful learning. However metacognitive activities during task solving and problem solving are not directly obvious. But they can appear by writing someone's thoughts down. The following analysis, which focusses on the level of argumentation as well as on the way of derivation, shows that the quality of representation is an essential condition for the possibility of metacognition.
  • Teaching multiparadigm programming based on object-oriented experiences
    171-182
    Views:
    147
    Multiparadigm programming is an emerging practice in computer technology. Co-existence of object-oriented, generic and functional techniques can better handle variability of projects. The present paper gives an overview of teaching multiparadigm programming approach through typical language concepts, tools in higher education. Students learning multiparadigm-oriented subjects would gain considerable expertise, which is highly needed by the industrial side in large-scale application development.
  • Cultivating algorithmic thinking: an important issue for both technical and HUMAN sciences
    107-116
    Views:
    141
    Algorithmic thinking is a valuable skill that all people should master. In this paper we propose a one-semester, algorithm-oriented computer science course for human science students. According to our experience such an initiative could succeed only if the next recipe is followed: interesting and practical content + exciting didactical methods + minimal programming. More explicitly, we suggest: (1) A special, simple, minimal, pseudo-code like imperative programming language that integrates a graphic library. (2) Interesting, practical and problem-oriented content with philosophical implications. (3) Exciting, human science related didactical methods including art-based, inter-cultural elements.
  • The use of e-tests in education as a tool for retrieval practice and motivation
    59-76
    Views:
    251

    In many studies we can read about what techniques are used in the educational process to deepen knowledge, and what can motivate students to learn. We aimed to give our students (who will be a teacher) a practical demonstration of learning techniques. We carried it within the framework of a course, at the end of which we also examined how much it motivates students if they write an e-test as a retrospective in order to deepen the material of the lesson. In the paper, we will present the results of the research as well as students’ opinions regarding the motivating effect of the tests.

    Subject Classification: 97-01, 97D40, 97I10

  • Mathematical Laboratory: Semiotic mediation and cultural artefacts in the mathematics classroom
    183-195
    Views:
    246

    Aim of this presentation is to summarize the influence of Tamas Varga on the Italian research and practice concerning didactics of mathematics since the 70s of the 20th centuries. While being in Budapest for the Conference I noticed that this influence was not known by most Hungarian mathematics educators. I guess that also in Italy, only the teacher educators of my generation know Varga’s influence on the teaching and learning of mathematics in primary school. Hence I start from a brief summary of development of mathematics curriculum in Italy (mainly in primary school) in the last decades of the 20th century. I focus some elements that may be connected with Varga’s influence and, later, some recent development of them.

    Subject Classification: 97G20, 97-U6, 97A40

  • Regula falsi in lower secondary school education
    169-194
    Views:
    165
    The aim of this paper is to offer some possible ways of solving word problems in lower secondary school education. Many studies have shown that pupils in lower secondary school education (age 13-14) encounter difficulties with learning algebra. Therefore they mainly use arithmetical and numerical checking methods to solve word problems. By numerical checking methods we mean guess-and-check and trial-anderror. We will give a detailed presentation of the false position method. In our opinion this method is useful in the loweer secondary school educational processes, especially to reduce the great number of random trial-and-error problem solving attempts among the primary school pupils. We will also show the results of some problem solving activities among 19 grade 8 pupils at our school. We analysed their problem solving strategies and compared our findings with the results of other research works.
  • The single-source shortest paths algorithms and the dynamic programming
    25-35
    Views:
    154
    In this paper we are going to present a teaching—learning method that help students look at three single-source shortest paths graph-algorithms from a so called "upperview": the algorithm based on the topological order of the nodes, the Dijkstra algorithm, the Bellman-Ford algorithm. The goal of the suggested method is, beyond the presentation of the algorithms, to offer the students a view that reveals them the basic and even the slight principal differences and similarities between the strategies. In order to succeed in this object, teachers should present the mentioned algorithms as cousin dynamic programming strategies.
  • Interactive web portals in mathematics
    347-361
    Views:
    212
    Many of the recent problems in higher education (less contact seminars, the heterogeneity and the increasing number of our students) call for new instructional methods. At University of Szeged we have developed a mathematical web portal which can offer a solution for such problems among the changing circumstances. This freely available, easy-to-use web-surface supports interactive mathematical problem-solving and student self assessment. Our computer program cooperates with a lot of free software (computer algebra systems, formula parsers, converters, word processors). WebMathematics Interactive has been available for the public since June 2002 on its web page http://wmi.math.u-szeged.hu.
  • The time spent on board games pays off: links between board game playing and competency motivation
    119-131
    Views:
    320

    The impact playing has on the development of thinking is an important topic of psychology of learning, brain research and mathematics didactics.
    Our research is also connected to the aforementioned topic. We investigated the effects of playing board games on competence motivation and the development of mathematical competencies.
    In this paper, we present the results of an experiment carried out in a secondary school class.
    The experimental group spent one of three weekly mathematics lessons playing board games.
    Apart from the several advantages of playing games in general, we can conclude that, based on the results of the national competence measurement, the mathematical competence of the students developed properly.
    The readiness and the progress of the pupils were compared on the basis of input and output tests and an initial knowledge measurement and, at the same time, we compared their level of mathematical competence with the results of the national competence
    measurement.

    Subject Classification: 97C70, 97D40

  • Learning and Knowledge: The results, lessons and consequences of a development experiment on establishing the concept of length and perimeter
    119-145
    Views:
    115
    In the paper the four main stages of an experiment are described focusing on the question as to how much measuring the length and perimeter of various objects such as fences, buildings by old Hungarian units of measurements and standards contribute to the establishment of the concept of perimeter.
    It has also been examined in what ways and to what extent the various forms of teaching such as frontal, group and pair and individual work contribute to the general knowledge, thinking, creativity and co-operation in this area.
    It will also be shown to what extent folk tales, various activities and games have proved to be efficient in the teaching of the particular topic.
    Every stage of the experiment was started and closed with a test in order to find out whether the development was successful and children managed to gain lasting knowledge in this particular area.
Database Logos

Keywords