Search

Published After
Published Before

Search Results

  • The impact of different fertilization methods on some microbiological soil characteristics
    119-126
    Views:
    114

    In our experiment, we studied the impact of an organic fertilizer, Bactofil® A10 (half- and full dosage applied in field practice) and an artificial fertilizer of Ca(NO3)2 content in different dosages (20-40 mg kg-1) – in addition to control treatments – on two different soils (calcareous chernozem, humus sandy soil) in 2005-2006, the experiment was complemented with treatments applying 250% dosage (100 mg kg-1 N, Bactofil® A10 2.5 times the field dosage) and a compost from urban sewage (25 g kg-1 compost) was also tested on these two soil types. In the
    experiment, several soil microbial parameters were studied. The experiment was set up at the Department of Agrochemistry and Soil Science using 1-kg pots.
    Our laboratory experiments were performed at the soil microbiology laboratory of UD CAS Department of Agrochemistry and Soil Science, the total number of bacteria, microscopic fungi, nitrifying and aerob cellulose-decomposing bacteria were determined together with the CO2-production of soil, N content of the biomass and urease enzyme activity.
    Statistical analysis of the data was done using the program SPSS 13.0, means of the measurements, deviation and significance values were calculated. 
    In 2005-2006, the effect of the different dosages of Bactofil® A10, and the Ca(NO3)2 fertilizer on the examined microbial parameters of calcareous chernozem and humus sandy soils can be summarized as follows:
    • Concerning the total number of bacteria, both treatments were effective on calcareous chernozem soil, the higher (significant) increment in bacteria number was observed in the artificial fertilizer treatments, while in the humus sandy soil Bactofil treatments had a beneficial effect. The number of microscopic fungi also increased in both treatments, higher numbers were observed in the average of two years in the Bactofil treatments.
    • The number of nitrifying bacteria was 2.5 times higher in both high-dosage treatments on calcareous chernozem soil, while on humus sandy soil a slight (not significant) increment was observed only int he high-dosage Bactofil treatment. The amount of aerob cellulose-decomposing bacteria significantly increased on calcareous chernozem soil in both the highdosage artificial fertilizer and the small-dosage Bactofil treatment, however, on humus sandy soil no significant increase was observed in either treatment.
    • The CO2-production increased in both soil types, although it was not significant in either treatment. A higher (though not significant) soil respiration was observed in the Bactofil treatments in both soil types.
    • The microbial biomass N values were significantly higher in the high-dosage Bactofil treatments, however, the high-dosage artificial fertilizer treatment also increased these values significantly on calcareous chernozem soil.
    • On calcareous chernozem soil, urease activity was significantly increased and reduced by high-dosage artificial fertilizer treatments and Bactofil treatments, respectively. On humus sandy soil, urease activity was also reduced except for the high-dosage artificial fertilizer treatment. In 2007, the pot experiment with 250% dosages was complemented with the application of compost rich in organic matter, the results of these treatments are sumnmarized as follows:
    • In the case of the total number of bacteria, all three treatments resulted in a significant increase on calcareous chernozem soil with the highest values in the Bactofil treatment. The Bactofil treatment was the most effective on the humus sandy soil, but the artificial fertilizer treatment also
    resulted in a significant increment. In the case of the total number of fungi, Bactofil treatments resulted in the highest values on both soils, but the compost treatment also increased the number of fungi in calcareous chernozem significantly. 
    • The number of nitrifying bacteria was increased most (significantly) by the Bactofil and compost treatments on both soil types. The amount of cellulose-decomposing bacteria was significantly increased by he compost treatment on calcareous chernozem soil, while its effect was not significant on humus sandy soil. The number of these bacteria was increased significantly by the Bactofil treatment on humus sandy soil.
    • On calcareous chernozem soil, all three treatments significantly increased CO2-production, while the compost treatments had the resulted in the largest increment in soil respiration on both soil types.
    • The soil biomass N content was significantly increased in both soils by the compost treatment, while in the case of the humus sandy soil, the Bactofil treatment also resulted in a significant increment.
    • Urease enzyme activity was significantly increased by the artificial fertilizer treatment on both soils. In calcareous chernozem soil, the Bactofil treatment resulted in a slight (not significant) reduction in enzyme activity. In humus sandy soil, the Bactoful treatment also resulted in a slight reduction, while the compost treatment increased (though not significantly) the urease activity.
    Based on our results, it can be stated that all three treatments were effective with respect to the studied soil microbial parameters. For both the calcareous chernozem and the humus sandy soil, the organic fertilizer Bactofil and the compost with high organic matter content had a stronger effect on some soil microbial parameters than the artificial fertilizer.

  • Statistical comparison of soil analysing results of chernozem soils
    93-99
    Views:
    143

    The soil fertility was degraded as a result of unreasonable tillage, therefore the application of site-specific nutrient replacement is necessary. It is essential for the application of precision fertilization to know the location, extension, soil properties and nutrient-supply of the different soil types of
    cultivated areas.
    We collected soil samples from 580 hectares of land in 2006. Soil samples were collected from every 5 ha in 30 and 60 cm depths during Spring from 20.05.2006 to 12.06.2006 and again in Autumn from 09.19.2006 to 02.10.2006. Soil samples were analysed at the Department of Agricultural Chemistry and Soil Science of DE-ATC.
    The two examined soils are slightly calcareous, weakly saline, poor in zinc. The calcareous chernozem soil is slightly acid, the content of humus, nitrogen, phosphorus and potassium is medium in this soil. The meadow chernozem soil is slightly alkaline, and properly supplied with humus and potassium, and middling supplied with nitrogen and phosphorus. The meadow chernozem soil is more heterogenous in soil plasticity, lime, saline, nitrogen phosphorus and potassium content and less heterogenous in pH and zinc content than the calcareous chernozem soil.
    Standard deviation of measured values in pH, soil plasticity, humus and nitrogen content significantly differ between the examined soil types. The soil plasticity, pH, humus, nitrogen and zinc content significantly differ among calcareous chernozem soil and meadow chernozem soil, but the difference in phosphorus content can be statistically proven only in case of Spring soil sampling.

  • Soil analysis as the foundation of precision nutritive supply in the Hajdúszoboszló region
    141-148
    Views:
    94

    Larger cultivated plots are heterogeneous from a pedological aspect. Heterogeneity causes problems during fertilization and harvest. The heterogeneity of cultivated areas can be compensated by fertilization which is based on soil analysis. We carried out research into the changes of the soil on three soil types, from 1966 to 2006, on the cultivated areas of Hajdúszoboszló.
    There were no significant changes in pH on chernozem meadow soil and meadow chernozem soil, but the pH increased in 0-30 cm layer on type meadow solonetz soil. The saline content decreased in every examined soil type. Decrease was the largest on meadow solonetz soil. Decline of humus content was the largest (0.95%) on chernozem meadow soil, and the smallest (0.39%) on meadow chernozem soil. The nitrogen content decreased with 528 ppm in the 0-30 cm layer on chernozem meadow soil, and decreased by 186 ppm on meadow solonetz soil. Phosphorus and
    potassium content increased in every examined soil types. Rise of phosphorus content was 188.9 ppm in the 0-30 cm layer on meadow chernozem soil. The potassium content rose by 153.7 ppm on this soil type. Phosphorus content increased with 70.8 ppm, and potassium content increased by 57.6 ppm from 1966 to 2006.

  • Heavy Metals in Agricultural Soils
    85-89
    Views:
    82

    The soil constitutes the basis of the food chain. To keep soil conditions in a good trim is very important, it’s part of the sustainable development and of producing food supply harmless to health.
    In some cases, soil productivity is the only important part, qualitative requirements or economical characteristics can improve it. The soil is threatened by two danger factors: the soil degradation and the soil pollution. The accumulation of different harmful and/or toxic substances in the soil is well known. Heavy metals constitute a part of it. Metals in the soil and in the soil-solution are balanced. This balance depends on the type of the metal, on the pH, on the cation-band capacity of the soil, on the redox relations and the concentration of cations in the soil.
    To be able to handle the metal contamination of the soil, it is important to estimate the form, the possible extension and the concentration of metals.
    Of course, the different types of soils have different physical-chemical, biological and buffer capacity, they can moderate or reinforce the harmful effects of heavy metals. To draw general conclusion of the dispersion and quantitative relations on the metals originated from different contamination sources is hard, because in some emissive sources contamination is limited in small areas but on a high level, some others usually expand on larger areas, and as a result of equal dispersion, the contamination’s level is lower.
    Heavy metals – unlike alkali ions – strongly bond to organic materials, or infiltrate in a kelát form. Their outstanding characteristic is the tendency to create metal-complex forms. Kelats take part in the uptaking and transportation of heavy metals. Heavy metals exert their effects mostly as enzyme-activators.
    The metals cannot degrade in an organic way, they accumulate in living organisms, and they can form toxic compounds through biochemical reactions.
    Lot of the heavy metals accumulate on the boundaries of the abiotic systems (air/soil, water/sediment), when physical or chemical parameters change, and this influences their remobilization.
    Human activity plays a great part in heavy metal mobilization, results in the human origin of most biochemical process of metals.
    To understand the toxic influence of accumulated metals of high concentration, their transportation from soils to plants or their damage in human health, must clearly defined and investigated.
    For effective protection against soil pollution, the types and levels of harmful pollution to soil must identified, regarding legal, technical and soil-science aspects, preferable in a single way. Difficulties in this area mean that toxicity depends on loading, uptake, soil characteristics and living organisms (species, age, condition etc.), furthermore, local and economic conditions considerably differ.

  • Morphological Features of Two Poa Species on Different Soil Types in Seminatural Grasslands
    35-39
    Views:
    82

    The Poa pratensis L. and the Poa angustifolia L. are close relative species whose morphological features vary greatly. Our goal was to examine how the inividuals from different soil types of these species differ statistically from one another, whether the morphological features of the variant species differ significantly, and whether they keep their specific features in dissimilar habitats.
    The quantitative features of the populations developing on distinct soil types wich are statistically separate provide for the different phenotype forming effect of the soil types as variant habitats. There is connection between the soil types and the measurement of the ramets on every soil types. The morphometric values of P. pratensis – that are bigger in all habitats – show that this species genetically widely adapted. Significantly different morphological features were found, but because of the high environmental dependence of the morphological features and of the significantly different characteristics which reveal several overlaps between the two species, these characteristics cannot be considered as reliable identification keys.

  • The effect of nickel-contamination, nitrogen-supply and liming on the chemical composition of perennial ryegrass (Lolium perenne L.)
    85-92
    Views:
    107

    Plant-production is determined by many production-factors. Each of these factors became subject of research-works through the years, still we state, that studying their interaction is even more important. For studying these interactions we set up a potexperiment, within that the direct effect and the interactions of four factors was inspected: soil, nitrogen-supply, nickel-loading and liming. Experiments were carried out on two soil types with extremely different characters: one was a chernozem soil with good fertility and buffering capacity, the other was a shifting sand soil with low humus-content and buffering capacity. Nitrogensupply and liming was added on two levels, while nickel on three within 12 combinations on each soil types. Plant production was cut two times within the vegetation period. The amount of production and dry matter was weighted, fractured and their element-content was measured by an ICP-detector.
    Ca-content on the shifting sand soil was determined by all three factors, however the interaction between nickel-loading and liming was also significant. Nitrogen and liming increased Cauptake, that is due to appropriate nutrient-supply and improvement of a better pH-value. On the chernozem soil nitrogen and CaCO3 also increased the Ca-content. This is caused by a better nutrient supply and a higher amount of available Ca-ions.
    On the shifting sand soil nickel content was increasing parallel to higher nitrogen-dosages. In presence of higher nickelamount the nickel-content of plants was also increasing, still according to liming, this increment was different. On the chernozem soil nitrogen a nickel increased Ni-uptake. However, liming also had a positive effect on Ni-content, that can be explained by the high amount on colloids in the soil, the adsorption of Ni-ions on them and in presence of liming material the replacement of Ca-and Ni-ions. 
    The potassium-content on the shifting sand soil was different in each liming-combination. In combinations without nickel the potassium-content of limed and not limed combinations was on the same level. In not limed combinations by adding nickel potassiumcontent was increasing, while in limed combinations no change was observed. On the chernozem soil by adding liming material the amount of uptaken potassium was decreasing, that is due to the antagonism between Ca- and K-ions. 

  • Comparative analysis of soil analysing datas on different sempling-plots
    85-90
    Views:
    86

    Hibrid maize is cultivated on larger plots, therefore the sown areas of hibrid maize are heterogeneous from a pedology aspect. Heterogenity causes problems during tasseling, chemical plant protection and harvest. The heterogenity of sown areas can be compensated by fertilization which is based on soil analysis. We carried out research into change of the soil on four soil types from 1987 to 2005.
    There were no significant changes in pH, hydroiodic acidity, CaCO3-content, humus-content on meadow chernozem soil. We detected equalization of salin content in the examined soil layers. There were no significant changes in the measured values on chernozem meadow soil and solonetz meadow soil in 2005. We discoverd equalization of saline content on chernozem meadow soil, but the changes were not as obvious as the changes on meadow chernozem soil. We found salinization in the 30-60 cm soil layer on type meadow soil that may be due to water movement.

  • Impact of ammonium nitrate and Microbion UNC bacterial fertilizer on dry matter accumulation of ryegrass (Lolium perenne L.)
    35-39
    Views:
    101

    Pot experiment was performed to investigate the effects of increasing NH4NO3 doses with or without Microbion UNC bacterial fertilizer
    application on dry matter production of ryegrass (Lolium perenne L.). Experiment was set up on calcareous chernozem soil of Debrecen-Látókép and on humus sandy soil of Őrbottyán. The bi-factorial trials were arranged in a randomized complete block design with four replications. Grass was cut three times. Dry matter production was determined and the sum of biomass of cuts was calculated as cumulated dry weights. Analysis of variance was carried out on the data in order to provide a statistical comparison between the treatment means. The least significant difference (LSD5%) test was used to detect differences between means. On the basis of our results it can be concluded, that the dry weights of ryegrass cultivated on chernozem soil were higher than on sandy soil. With increasing nitrogen supply the dry matter production of grass significantly increased in both types of soils. In case of sandy soil the increasing effect was more expressed, but dry weights of this soil never reached the appropriate values of chernozem soil. Application of Microbion UNC had positive effect on dry matter production of ryegrass grown on both two types of soils but the effect was more expressed on chernozem soil. Finally it can be concluded that the increasing effect of NH4NO3 on biomass weights was more expressed in both types of soils, the biofertilizer application also increased the dry weights of plant in a small degree. 

  • The Role and Significance of Soil Analyses in Plant Nutrition and Environmental Protection
    3-8
    Views:
    98

    Hungary has a rich history of soil analyses and soil mapping. Our main tasks today are the preservation of soil fertility as well as balancing the goals of production and environmental protection. The main requirement of agricultural production is to adapt to ecological and economic conditions.
    In a series of consultative meetings in the past seven years, representatives from Central and Eastern Europe have analyzed nutrient management practices in their respective countries. According to a joint memorandum agreed upon in 2000, in the countries awaiting accession, the quantity of nutrients used per hectare is considerably smaller than the Western-European usage targeted through special subsidies. The current low nutrient usage contradicts the principles of sustainability and that of the efficient use of resources, jeopardizing soil fertility.
    In Hungary, the use of inorganic fertilizers underwent a dynamic development, which manifested itself in an almost tenfold usage growth between 1960 and 1985. This growth slowed down somewhat between 1985 and 1990 and then reduced dramatically after 1990, reaching record lows at the usage levels of the 60s. The nutrient supply has had a negative balance for the last 15 years.
    The increasing and then decreasing usage trends can equally be detected in the domestic yield averages of wheat and corn as well as in the nutrient supply of soils. Yields were the largest when usage levels were the highest, and decreased thereafter. Draughts have also contributed to smaller yields. The dramatic decrease in the use of inorganic fertilizers when adequate organic fertilizers are lacking endangers our soils’ fertility.
    About 50% of soils in Hungary are acidic. Acidity is mostly determined by soil formation, but especially on soils with a low buffering capacity, this acidity may intensify due to inorganic fertilizers. Sustainable agriculture requires the chemical improvement of acidic soils. According to their y1 values, the majority of our acidic soils need to be improved. This chemical soil remediation is required in 15% of the acidic soils, while it’s recommended for another 20% of these soils.
    Results of the analyses conducted in the framework of the soil-monitoring system set up in Hungary in 1992 show that in 95% of the analyzed samples, the toxic element content is below the allowable limit. Cultivated areas are not contaminated; toxicity above the legal level was found only in specific high-risk sampling areas: in the vicinity of industry, due to local overload. The basic principle of sustainable agriculture is to preserve soil fertility without undue strain on the environment. The intensity of the production needs to be considered according to the conditions of the site; i.e.; nutrient management needs to be site-specific. It is recommended to differentiate three types of cultivated land in terms of environmental sensitivity: areas with favorable conditions, endangered areas, and protected areas, and then to adopt nutrient management practices accordingly. To meet all the above-mentioned goals is impossible without systematic soil analysis. Tests conducted by the national monitoring system cannot replace regular field measurements.

  • Different soil fertility conditions depending on different land use methods
    169-172
    Views:
    101

    In precision nutrient management the most important aspect is adaptation but we should consider the possibility of the long-term improvement of soil fertility within the less fertile landscape zones.  This possibility can be evaluated principally by long-term field experiments, which are running on similar soil types. The results of these field experiments can indicate that which soil fertility status should be attained. Some more important soil fertility data, (such as pH, P-, K- and soil organic matter (SOM) content) of a long-term field  experiment with increasing farmyard manure(FYM) doses or equivalent NPK fertilizers, set up on an Eutric cambisol, are presented. The yieldincreasing capacity of FYM doses was only 82%, as compared to the equivalent amount of mineral NPK, but long-term FYM treatments resulted in 10% higher SOM content than that of equivalent NPK
    fertilizer doses. The studies indicate that SOM content is a function of local climate and clay content of the soil, and neither long-term high FYM doses can increase SOM content steadily above a supposed steady-state value. However we have to make efforts to keep the optimum level. The lowest soil reactions developed both with the highest NPK doses and without any fertilization. AL-P2O5 content of soil was increased more by mineral fertilization than by FYM treatments, but in case of AL-K2O content there was no difference between the fertilization variants. However the highest doses of both fertilization  variants increased soil nutrient content to an excessive degree. Wecould get very valuable data from the unfertilized control plots as well, where long-term yield data suppose 48 kg ha-1 year-1 air-borne N-input.

  • Comparative studies to model bioavailability of pesticides in distinctive soil types
    17-23
    Views:
    97

    Bioavailability of pesticides is determined by two major factors: soil characteristics and pesticides’ chemical feature. These factors result in a definite adsorption capability whose extent varies on a large scale. By revealing interactions between pesticides and soils it is of high interest to model bioavailability of widely used pesticides, as it is a key element in terms of prospective toxicological aspects. Our work signifies steps forward improving pesticide soil mobility prediction models as we created model systems representing correctly natural relations. Comparison of different solvent extraction methods proved to be an efficient tool to gain information on the bioavailability of some widely used pesticides as well as to model actual environmental processes.
    Comprehensive comparison has been made between different experimental methods by applying 5 extraction models showing diverse efficiency in extracting capability of pesticides. In some cases chloroform excelled in mobilizing pesticides from soil, however mostly application of humic acid solution as extraction model was found to be at least as efficient as methanol, chloroform or CaCl2-solution.
    Four chemically much different pesticide (simazine, acetochlor, chlorpyrifos and diuron) were applied to two soil types (both sandy and brown forest). The extracted amounts were determined by GC/MS technique. Adsorption coefficients (Kd) were also calculated for the examined samples.
    Obtained results for Kd indicated that chemical feature of pesticides seemed to be of utmost importance in terms of soil binding capability preceding the relevance of soil characteristics. Adsorption capability of chlorpyrifos proved to be the most pronounced preceding simazine and the least prone to bind to soil acetochlor and diuron

  • SIM Samples Investigation by Statistical Methods
    194-197
    Views:
    91

    The assessment of the present condition of the soil is very important, because the accession of the number of the European Union members is in the near future. This can be the base of the modern agrarian environmental management programme. The assessment must be objective, detailed and analyse the processes in the soil.
    Respecting the above causes was decided to create an Environmental Information Monitoring System. This system consists of more parts. One of them is the Soil Information Monitoring System (SIM). This system started to work in 1992.
    This system has two functions. Creating and actuation is obligatory from the international contracts, on the other hand the public SIM has very important role in the conservation of the soil.
    The SIM territorial measuring grid consists of 1236 measuring points. These points are representatives. The distributions of the points by the types of soil attend the variety of the types of soil of the country.
    The investigated elements in 6 types of soil were in our experiment (the group of scandium and the lanthanide series elements). There are 6 elements above the detection limit (Gadolinium, Neodymium, Praseodymium, Scandium, Samarium, Yttrium).
    The Neodymium concentration is 2 times higher than the content of Gadolinium and Yttrium.
    The Neodymium concentration is 4 times higher than the content of Praseodymium, Scandium and Samarium.
    In the case of Dysprosium, Europium, Lutetium, Terbium, Ytterbium the concentrations were below 1 mg/kg.

  • Investigation of Chromium(III)-Picolinate Adsorption on Some Soil Types
    190-193
    Views:
    75

    In the experiment adsorption characteristics of different soil types (humic sand, meadow soil, leached chernozem and meadow solonec) was examined on the basis of adsorption isotherms for Cr(III)-picolinate. The Langmuir equation was used to describe the isotherms by which the amounts of metal ions actually and maximally adsorbed by the soils were determined concerning the given complex. A comparison was made among the organically bound Cr(III)-picolinate, an inorganic Cr(III) compound and a Cr(VI) form examined in a previous study. Based on the adsorption isotherms, adsorption capacity of the Cr(III)-picolinate was found 20 times smaller on sandy soil and 50 times smaller on the chernozem comparing to that of the inorganic Cr(III)-chloride, thus, the bio-availability of the chromium for the plants is 20 and 50 times higher in case of the given soil types. For the well-known toxic Cr(VI)-form, the adsorption was 2 times higher in case of sandy soil and 5 times higher for chernozem than in case of the organic Cr(III)-complex compound.

  • The effect of different herbicide on the number and activity of living microorganisms in soil
    76-82
    Views:
    136

    Sustainable plant growth, considering the difficulties of weed elimination, cannot be effective without the application of herbicides. However, these chemicals have enormous ecological implications, including effects on the microbiological communities of soils. It is advisable to use herbicides that have minimal secondary effects on the environment and soil-living microorganisms. In contrast, herbicides with prolonged growth stimulating or inhibiting effects are not suitable, because both types have strong influences on the number and activity of bacteria, thus causing changes in the ecological equilibrium.
    Preceding small plot experiments, laboratory tests were carried out to study the effect of herbicides used in maize cultures on the number of bacteria and growth of microscopic fungi.
    Substances that were observed to have stronger influences were applied in small plot experiments set up in the experimental garden of the Department of Plant Protection of the University of Debrecen. We studied the effects of four herbicides (Acenit A88EC, Frontier 900 EC, Merlin SC and Wing EC) on the microbiological properties of the soil. These herbicides were used in different concentrations in maize culture, and we investigated the effects in different soil layers.
    In the laboratory experiments, we determined the total number of bacteria and microscopic fungi and examined the growth of Aspergillus niger, Trichoderma sp. and Fusarium oxysporum on peptone-glucose agar containing herbicides.
    During the small plot experiments, soil samples were collected 3 times a year from 2-20 cm depth. The total numbers of bacteria and microscopic fungi were determined by plate dilution method, while the method of most probable number (Pochon method) was used to determine the numbers of nitrifying bacteria and cellulose decomposing bacteria. To evaluate the microbiological activity of the soil samples we measured carbon-dioxide release (after 10 days incubation), nitrate production (after 14 days incubation) and the concentration of C and N in the biomass.
    We can summarize our results as follows:
    • In laboratory experiments, herbicides caused a decrease in the number of bacteria and inhibited the growth of microscopic fungi.
    • Frontier 900 EC and Acenit A 880 EC had the strongest inhibiting effect on microorganisms.
    • In small plot experiments, herbicide treatment decreased the total number of bacteria and microscopic fungi.
    • Herbicides caused a significant increase in the number of nitrifying and cellulose decomposing bacteria.
    • Different herbicides containing the same active compound had similar influences on soil microoorganisms.
    • A significant increase was observed in the physiological processes of tolerant microorganisms surviving the effects of herbicides

  • The aggregate stability of the soil in respect to the uniform aggregate stability indicator
    83-99
    Views:
    136

    Soil structure and its quality are fundamental properties because they control many processes in soils. Tillage, crop and other factors influence soil structure. Efficient protection of it needs indication of changes in soil structure. A new Normalized Stability Index proposed by Six et al. (2000) tries to evaluate these changes, which was compared with some former used indices. The most common method (wet sieving) was modified to reduce the confounding effects of different particle size distribution of different soil types and method used to the investigation. Changes in soil structure caused by tillage and crop management therefore have been made quantitative and comparable. In this paper, we review the new method and Normalized Stability Index proposed by Six et al. (2000) and present the results of our investigations.

  • The effect of various composts on vegetable green mass on two soil types
    179-183
    Views:
    180

    Composting of sewage sludges makes easier the utilization of sewage sludge in the agriculture and the composts in good quality could increase the nutrient content of soil. Due to the composting process, the sewage sludge composts with high organic matter content can be utilized in the same way as other composts or farmyard manure.
    Composts produced in different ways have different effects on the physical, chemical and biological properties of different soils, although their positive effects have already proved in the literature. In our study the effects of composts from different composting processes were investigated in soil-plant systems. The different physical and chemical properties of the two examined soil types (arenosol and chernozem)strongly influenced the nutrient supply capacity of composts which could be characterized by the growth of ray-grass as a test plant in the pot experiment. In this work we examined the effects of three different composts on the green weight of plants on the fourth and eighth weeks after the treatment and sowing.

  • Experiments for Isolating and Culturing Soil-borne Mycobacteria (Contemporary Publication)
    107-110
    Views:
    71

    On grounds of the several thousand tests performed in the field of this topic, the following conclusions may be arrived at:
    1. The informations available and the experimental data on soil mycobacteria are very incomplete.
    2. Of the 77 strains isolated from similar soil types so far, and adaptable for pure basic culture, 47 strains are confusingly similar, from morphological aspects, to the mycobacteria isolated from clinical material.
    3. The apparently homogeneous cultures isolated from the soil are generally co-infected and, therefore, the morphological, biochemical, and other physiological characteristics of the isolated strains can be studied only on base cultures after purification.
    4. For the isolation of the soil mycobacteria experiments qualified hitherto as most suitable processes the 4 or 1 per cent NaOH neutralized with H2SO4, and the 1 per cent NaOH or 1 per cent Na3PO4 treatments, on Gottsacker agar medium with plate or top pouring, at a temperature of 29 to 37 C°, in a soil suspension sequence of 1:500 to 1:5000 final dilution.
    5. The Ziehl-Nielsen staining of the isolated mycobacteria composed to sub-cultures is best performed by heating with an infra red radiator from above, instead of the gas flame used so far to heat from below.
    The repetition of the biochemical test of the hitherto isolated 77 purified strains is under progress, and will be reported on in our next scientific publication.

  • Effects of soil cultivation and environmental changes on maize yield
    97-100
    Views:
    172

    We evaluated the relationships among soil cultivation and other agrotechnical factors (fertilization, number of plants and hybrid) within the framework of a multifactorial long-term experiment set at the Látókép Experimental Site of the Centre for Agricultural Sciences of the University of Debrecen in mid-heavy chalcareous chernozem soil based on a long-term experiment conducted for a 5-year period (2002–2006).

    Based on the evaluation of soil cultivation by the average of treatments, it may be assessed that spring ploughing (8.204 t ha-1) provides more favourable conditions to the stand compared to spring shallow cultivation; however, this did not result in a significant difference. Spring ploughing considerably increased the yield of hybrid FAO 300 in dry years, whereas it considerably increased the yield of hybrid FAO 400 in favourable crop years. A stand of 70 thousand stems/ha provided the higher yield result in both soil cultivation types. It was sufficient to use a fertilizer dose of 120 kg N ha-1 for economical production.

  • Virtual Soil Information Systems in the Bihar Subregion and at Tedej Corp
    186-189
    Views:
    114

    After evaluating the sample sites’ soils and environmental status, we built up 2 different soil information systems. The first relies on analog data (soil maps), and is based on a regional model; its sample site is the Bihar sub-region. The second is a complex, field scale virtual 3D system, based on several types of data sources. (Aerial photos, GPS, field samples, hyper and multispectral images, soil maps). In this paper, we analyze and evaluate these systems. The greatest advantage of the models is that, with their usage, we can reveal connections which cannot be made by analyzing the individual elements of our data sources. We discovered that with the help of our systems, the monitoring and evaluating of the processes taking place in the soil is more fast and simple.

  • Effect of molybdenum treatment on uptake of plant and soil molybdenum content in a field experiment
    117-122
    Views:
    180

    Molybdenum is not a well-known microelement, but being a constituent of several important cellular enzymes it is an essential microelement. Molybdenum occurs in all foods, but at very low levels. There does not appear to be any particular foods or types of foods, which in the absence of extrinsic factors, naturally have high levels of molybdenum. However, environmental pollution, from natural or anthropogenic sources, can lead to high level of the metal in plants.
    Our study is based on the long-term field experiments of Nagyhörcsök, where different levels of soil contamination conditions are simulated. Soil and plant samples were collected from the experiment station to study the behaviour of molybdenum: total concentration, available  concentration, leaching, transformation, uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop. In this work we present the results of maize and peas and the soil samples related to them.
    According to our data molybdenum is leaching from the topsoil at a medium rate and it appears in the deeper layers. In the case of plant samples we found that molybdenum level in the straw is many times higher than that is in the grain, so molybdenum accumulates in the vegetative organs of the plant. The data also show differences in the molybdenum-uptake of cereals and Fabaceae (or Leguminosae).

  • Measurement of degradation on under-utilized natural turf
    115-121
    Views:
    170

    The role of turf serving animal husbandry is significantly declining with the decreasing number of grazing livestock in Hungary. Accordingly, the area of under-utilized or non-utilized turfs is increasing. At the University of Debrecen, Institutes for Agricultural Research and Educational Farm, Karcag Research Institute we studied four types of turf utilization in three repetitions on a salt meadow with Alopecurus pratensis. As a result of the performed examinations, we identified the composition of the flora structure on the investigated area and we measured carbon-dioxide circulation and soil moisture.

  • Economic questions of maize production on different soil types
    289-292
    Views:
    117

    The requirements and objective of cultivation are in constant change. For example, different cultivation systems are developed for the purpose of soil protection, the preservation of its moisture content and on soils with various precipitation supply or production site conditions. Traditionally, one of the most important cultivation aims is crop needs. Further cost saving in fertilisation and crop protection can only be achieved by reducing the quality and quantity of production or it cannot be achieved at all. Furthermore, the costs can be significantly reduced by means of the rationalisation of cultivation. Energy and working time demand can also be notably reduced if ploughing is left out from the conventional tillage method. The key requirement of economicalness is to perform the cultivation at the optimal date, moisture level and the lowest possible cost.
    Within production costs, the cost of cultivation is between 3–17%, while they are between 8–36% within machinery costs. It is the vital condition the usability of each technological method to progressively reduce costs. Our evaluation work was carried out with the consideration of the yield data obtained from cooperating farms and the experiment database of the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen. Three technological methods (ploughing, heavy cultivator and loosening tillage) were used on several soil types which differ from in terms of cultivability (chernozem, sandy and sandy clay soils) from the economic/economical aspect. We examined the sectoral cost/income relation of maize production as an indicator plant. The maize price during the analytical period was 45 thousand HUF per t. On chernozem soils, the production of maize can be carried out on high income level, while maize production on sandy soils has a huge risk factor. The role of cultivation is the highest on high plasicity soils, since they have a huge energy
    demand and the there is a short amount of time available for each procedure in most cases.

  • Economic questions of precision maize production on chernozem soil
    293-296
    Views:
    132

    It is one of the main topical objective to establish the conditions of sustainable farming. The sustainable development in crop production also calls for the harmony of satisfying human needs and providing the protection of environmental and natural resources; therefore, the maximum consideratio of production site endowments, the common implementation of production needs and environmental protection aims, the minimum load on the environment and economicalness. Precision farmin encompasses the farming method which is adjusted to the given production site, the changing  technology in a given plot, the integrated crop protection, cutting edge technologies, remote sensing, GIS, geostatistics, the change
    of the mechanisation of crop production, and the application of information technology novelties in crop production. Modern technology increases efficiency and reduces costs. The efficiency of crop production increases by reducing losses and the farmer has access to a better decision support information technology system. In addition, we consider it necessary to examine the two currently most important economic issues: “is it worth it?” and “how much does it cost?”. During the analysis of agricultural technologies, we used the precision crop production experiment database of KITE Zrt. and the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen.
    During our analytical work, we examined three technological alternatives on two soil types (chernozem and meadow). The first technology is the currently used autumn ploughing cultivation. We extended our analyses to the economic evaluation of satellite navigationassisted ploughing and strip till systems which prefer moisture saving. On chernozem soil, of the satellite-based technological alternatives, the autumn ploughing cultivation provided higher income than strip till. In years with average precipitation supply, we recommend the precision autumn ploughing technological alternative on chernozem soils in the future. On meadow soil, the strip till cultivation technology has more favourable economical results than the autumn ploughing. On soils with high plasticity – considering the high time and energy demand of cultivation and the short amoung of time available for cultivation – we recommend to use strip till technologies. 

  • Evaluation of KCl-EDTA-, CaCl2- DTPA-, CaCl2-DTPA-TEA extractants for estimating available Cu in soils
    5-9
    Views:
    149

    KCl-EDTA-, CaCl2-DTPA-, CaCl2-DTPA-TEA extraction
    methods were compared to determine the plant available Cu
    amounts in the soil samples. In the soil extracts, the amounts of
    copper were measurable. In the buffered CaCl2-DTPA-TEA
    extracts, data showed the lowest values.
    On the applied soils, a correlation was observed between
    plant removal and soil Cu using extractants mentioned above. The
    closest correlation appeared in the case of sandy soils.
    From the results of statistical analysis, it appears that soil
    properties may play role in the efficiency of the extraction using
    either CaCl2-DTPA or KCl-EDTA solutions.
    To establish more reliable relations, further studies with
    different types of soils are needed.

  • Nutritional disorders of arable crop growth in eastern Croatia
    273-290
    Views:
    154

    Nutritional imbalances accompanied with growth retardation of crops at early growth stage were found since the last 40 years on certain arable lands in eastern Croatia. In this regard, phosphorus (P) deficiencies in maize and wheat were found mainly on acid soils of the western part of the region, potassium (K) deficiencies in maize, soybean on the hydromorphic neutral to alkaline calcaric drained gleysols of Sava valley lowland, while zinc (Zn) deficiencies were observed mainly in seed-maize and soybean on neutral calcaric eutric cambisols of the eastern part of the region. Cold and moist spring is factor promoting P deficiency symptoms. As oasis of normal crops existed on same arable land, comparison of plant and soil composition was possible from typical sites. P nutrition disorders were in connection with the lower P and the higher aluminum (Al) and iron (Fe) concentrations in the top of plants and the lower soil pH values. K-deficiency as result of strong K fixation and imbalances with high levels of magnesium (Mg) were the main responsible factors of low maize and soybean yields on some drained gleysols. Chlorosis incidences typical for Zn deficiency in maize and soybean were in close connection with the higher soil pH, the lower quantities of mobile Zn, here and there the higher mobile P in soil, the lower concentrations of Zn and the higher levels of Al and Fe in plants. Overcoming the above mentioned disorders and normalization of yields were achieved using ameliorative fertilization either by K or P fertilizers and in case of Zn by foliar spraying of crops with 0.75% ZnSO4 solution. Also, alleviations are possible by selection of more tolerant genotypes of field crops to specific types of nutritional disorders. From this aspect, some practical solutions were recommended for maize with reference to K nutritional problems.