Search

Published After
Published Before

Search Results

  • Different soil fertility conditions depending on different land use methods
    169-172
    Views:
    82

    In precision nutrient management the most important aspect is adaptation but we should consider the possibility of the long-term improvement of soil fertility within the less fertile landscape zones.  This possibility can be evaluated principally by long-term field experiments, which are running on similar soil types. The results of these field experiments can indicate that which soil fertility status should be attained. Some more important soil fertility data, (such as pH, P-, K- and soil organic matter (SOM) content) of a long-term field  experiment with increasing farmyard manure(FYM) doses or equivalent NPK fertilizers, set up on an Eutric cambisol, are presented. The yieldincreasing capacity of FYM doses was only 82%, as compared to the equivalent amount of mineral NPK, but long-term FYM treatments resulted in 10% higher SOM content than that of equivalent NPK
    fertilizer doses. The studies indicate that SOM content is a function of local climate and clay content of the soil, and neither long-term high FYM doses can increase SOM content steadily above a supposed steady-state value. However we have to make efforts to keep the optimum level. The lowest soil reactions developed both with the highest NPK doses and without any fertilization. AL-P2O5 content of soil was increased more by mineral fertilization than by FYM treatments, but in case of AL-K2O content there was no difference between the fertilization variants. However the highest doses of both fertilization  variants increased soil nutrient content to an excessive degree. Wecould get very valuable data from the unfertilized control plots as well, where long-term yield data suppose 48 kg ha-1 year-1 air-borne N-input.

  • The Role and Significance of Soil Analyses in Plant Nutrition and Environmental Protection
    3-8
    Views:
    80

    Hungary has a rich history of soil analyses and soil mapping. Our main tasks today are the preservation of soil fertility as well as balancing the goals of production and environmental protection. The main requirement of agricultural production is to adapt to ecological and economic conditions.
    In a series of consultative meetings in the past seven years, representatives from Central and Eastern Europe have analyzed nutrient management practices in their respective countries. According to a joint memorandum agreed upon in 2000, in the countries awaiting accession, the quantity of nutrients used per hectare is considerably smaller than the Western-European usage targeted through special subsidies. The current low nutrient usage contradicts the principles of sustainability and that of the efficient use of resources, jeopardizing soil fertility.
    In Hungary, the use of inorganic fertilizers underwent a dynamic development, which manifested itself in an almost tenfold usage growth between 1960 and 1985. This growth slowed down somewhat between 1985 and 1990 and then reduced dramatically after 1990, reaching record lows at the usage levels of the 60s. The nutrient supply has had a negative balance for the last 15 years.
    The increasing and then decreasing usage trends can equally be detected in the domestic yield averages of wheat and corn as well as in the nutrient supply of soils. Yields were the largest when usage levels were the highest, and decreased thereafter. Draughts have also contributed to smaller yields. The dramatic decrease in the use of inorganic fertilizers when adequate organic fertilizers are lacking endangers our soils’ fertility.
    About 50% of soils in Hungary are acidic. Acidity is mostly determined by soil formation, but especially on soils with a low buffering capacity, this acidity may intensify due to inorganic fertilizers. Sustainable agriculture requires the chemical improvement of acidic soils. According to their y1 values, the majority of our acidic soils need to be improved. This chemical soil remediation is required in 15% of the acidic soils, while it’s recommended for another 20% of these soils.
    Results of the analyses conducted in the framework of the soil-monitoring system set up in Hungary in 1992 show that in 95% of the analyzed samples, the toxic element content is below the allowable limit. Cultivated areas are not contaminated; toxicity above the legal level was found only in specific high-risk sampling areas: in the vicinity of industry, due to local overload. The basic principle of sustainable agriculture is to preserve soil fertility without undue strain on the environment. The intensity of the production needs to be considered according to the conditions of the site; i.e.; nutrient management needs to be site-specific. It is recommended to differentiate three types of cultivated land in terms of environmental sensitivity: areas with favorable conditions, endangered areas, and protected areas, and then to adopt nutrient management practices accordingly. To meet all the above-mentioned goals is impossible without systematic soil analysis. Tests conducted by the national monitoring system cannot replace regular field measurements.

  • Examination of Reproductive Performance of Roe Deer (Capreolus capreolus) in Hungary
    33-38
    Views:
    90

    The objective of the research partly is to compare the reproduction performance of the populations living in different regions with regard to some special characteristics (age, condition).
    When estimating the age through tooth wear and cementum-layer-counting there was a difference of 0.87 years in favour of the first one (r=0,840; p<0,001). I found cementum layers at 42% of the does in the study after examining the MI teeth.
    There was lose connection between the weight (eviscerated, with head and legs) and the KFI (r=0,296; p<0,01), and for further analysis, I used only the KFI as the index for condition.
    The regional average KFI varied from 0.24-0.37 in fawns, 0.82-1.73 in does, with individual extremes of 0-4.05. Within the examined regions the highest index belonged to the prime-aged does, while the 1-year-olds had a lower rate, and it was the lowest in the does older than 8 years.
    The rate of fertility was between 83,3(ns)-100% as we can see from the presence of the CL. All the examined does were fertile, except in one region, while among the female fawns in two regions I only found three with active ovaries. The average number of CL was 1.5-2.13, and this varied by regions; all in all it was the highest in the 2-7-year-old group (1.96) and in the ones over 8 years (2.00!), while it was lower in the does younger than 1 year (1.90). The high fertility of the does over 8 years is remarkable.
    I could examine the number of embryos in two regions during the post-implantation period, and beside 100% fertility I found significant differences among the does, which can be associated with the condition. The ratio of CL carriers and the pregnant does was 100% and 73% in the two regions, the average number of CL were 1.92 and 1.72, while the average embryo number were 1.83 and 1.36 per doe. The difference between the CL and the embryo numbers on the two regions were 5% and 21%. The difference (prenatal loss) is in connection with the age (age class) of the doe. It is possible, however, that in some cases oestrus was not followed by gestation. But in roe deer, owing to the commonly known lack of luteolysis-mechanism (Flint et al., 1994), the regression of the CL of the does that did not get pregnant takes place in December and January, so the CL found in January cannot prove a previous pregnancy, which might have been followed by an abortion.
    Although it has to be proven, it seems that the number of the CL (potential progeny) can be associated with the age (r=0,418; p<0,01) and the weight (r=0,312; p<0,01) of the doe, while the embryo number (realised progeny) is influenced by the age of the doe and probably by external factors.
    It is essential to continue and extend the research to increase the reliability of the results and their correlation.

  • Current Conditions and Opportunities of Biofarming in Hungary
    150-156
    Views:
    85

    The aim of organic farming is not to maximize income, but to achieve optimal product quality. It is completed by the tightest possible material, and energy flow within the farm. Organic agriculture significantly reduces external inputs by avoiding the use of chemo-synthetic fertilizers, pesticides and pharmaceuticals. Instead it works with nature to increase both agricultural yields and disease resistance. Total independence of external resources can not be achieved in Hungary due to the small-scale of organic animal husbandry. Some materials in limited quantities can be purchased from external resources, though the group of these materials is strictly regulated. Organic farming harmonizes with the concept of European multifunctional agriculture, because besides farming, it includes social considerations, as it helps to maintain natural resources and the relationship between people and their environment, and provides a living for those living in the region.
    As regards organic farming the fertility of the soil and the health of vegetation can be influenced in various ways. Farmers have to be highly skilled and able to manage a farm with great expertise. Generally it can be stated that as the use of non-organically produced products is limited, the opportunities to correct failures made by the farmer are minimal, contrary to conventional farming. Farmers must be intent on developing the tightest material- and energy flow. This means that organic farms ideally have both animal husbandry and crop production. This energy and skill demanding system of farming is compensated by state subsidies, growing market share and relatively high prices for organic products.

  • Soil Fertility Management in Westsik’s Crop Rotation Experiment
    34-39
    Views:
    90

    The crop rotation experiment, established by Vilmos Westsik in 1929, is the best known and most remarkable example of continuous production in Hungary. It is still used to study the effects of organic manure treatment, develop models and predict the likely effects of different cropping systems on soil properties and crop yields. Westsik’s crop rotation experiment provides data of immediate value to farmers concerning the applications of fertilisers, green, straw and farmyard manure. The experiment also provides a resource of yield, plant and soil data sets for scientific research into the soil and plant processes which control soil fertility, and into the sustainability of production without environmental deterioration. The maintenance of Westsik’s crop rotation experiment can be used to illustrate the value of long-term field experiments.

  • Analysis of small ruminants’ semen under the cooling, deep-freezing and sex-orientation method
    53-58
    Views:
    127

    The aim of this study was to examine the influence of cooling, deep-freezing and sex-orientation methods on fertility of ram and buck semen. It was pointed out that deep-freezing and sexorientation methods had a more considerable destruction on both semen compared with the effect of cooling method. However, with the development of the sex-orientation method, the results of  lambing had a significant increase in sheep. On the other hand, the NRR of the inseminations with deep-frozen ram semen exceeded most of previously publicated results. Being interesting, and hopefully useful benefit in practice that the analysed buck semen samples are shown more favourable results in all methods compared with the same results of rams.

  • Comparative examination of a mineral fertiliser and a bacterial fertilizer on humic sandy soil
    111-116
    Views:
    79

    In our pot experiment, the impact of a bacterial fertilizer, Bactofil® A10 and a mineral fertilizer Ca(NO3)2 applied in different rates was studied on some soil chemical and microbiological characteristics of a humic sandy soil (Pallag). Perennial rye-grass (Lolium perenne L.) was used as a test-plant. Samples were collected four and eight weeks after sowing in each year. The experiment was set up in 2007-2009 in the greenhouse of
    the UD CASE Department of Agrochemistry and Soil Science. The available (AL-extractable) nutrient contents of soil, among the microbial parameters the total number of bacteria, the number of microscopic fungi, cellulose-decomposing and nitrifying bacteria, the sacharase and urease enzyme activity, as well as the soil respiration rate were measured.
    Statistical analyses were made by means of the measurements deviation, LSD values at the P=0.05 level and correlation coefficients were calculated. Results of our experiment were summarised as follows:
    − The readily available nutrient content of humic sandy soil increased as affected by the treatments, in case of the available (AL-extractable) phosphorus and potassium content the higher value was measured in high-dosage artificial fertilizer treatment.
    − The treatments had also positive effect on several soil microbial parameters studied. The higher-dosage mineral fertilizer treatments had a beneficial effect on the total number of bacteria, cellulose-decomposing and nitrifying bacteria. No significant differences were obtained between the effect of treatment in case of the total-number of bacteria, the number of microscopic fungi and nitrifying bacteria.
    − On the sacharase enzyme activity the artificial fertiliser treatments proved to be unambiguously stimulating, the urease activity significantly increased on the effect of the lower-dosage Ca(NO3)2 artificial fertilizer treatment. 
    − The soil respiration increased in all treatments in related to the amounts applied, significantly increased in the highest rate of Ca(NO3)2 fertilizer addition. 
    − Some medium and tight positive correlations were observed between the soil chemical and microbiological parameters studied in case of both nutrient sources. 
    Summarizing our results, it was established that the organic and all the mineral fertilizer treatments had beneficial effects on the major soil characteristics from the aspect of nutrient supply. In majority of the examined soil parameters (AL-extractable phosphorus- and potassium, total number of bacteria, number of cellulose-decomposing and nitrifying bacteria, activity of sacharase enzyme) the high rate of Ca(NO3)2 mineral fertilizer treatment proved to be more stimulating, but at the same time the high rate bacterium fertilizer resulted in significant increases in
    the nitrate-N content, the AL-potassium content of soil, the total number of bacteria, the number of cellulose-decomposing and nitrifying bacteria and the urease enyme activity. 
    Our examinations showed that the mineral fertilizer treatments proved to be more stimulating on most of the soil parameters studied but according to our results, it was established that Bactofil is efficiently applicable in the maintenance of soil fertility and the combined application of
    mineral fertilizer and bacterium fertilizer may be a favourable opportunity – also in aspect of the environmental protection – in maintaining soil fertility.

     

  • Application of semen evaluation techniques
    5-11
    Views:
    180

    Laboratory methods of semen evaluation are used to select males for artificial insemination. The current review describes several techniques that have been recently used for sperm analysis. Conventional microscopic methods in combination with the objective computerassisted sperm motility and morphology analyzers and flow cytometry, allows to obtain more precise information about the membrane and functional status of spermatozoa. By using several methods to detect motility, viability, acrosomal and capacitation status besides DNA integrity sperm biology and some of the mechanism involved in sperm cry injury can be better understood. The number of possible targets related to sperm quality is increasing, and possible that some of them could enable sperm analysis for predicting freezability and fertility to be improved.

  • Magnesium uptake dynamism of maize (Zea mays L.) on prairie soil
    83-89
    Views:
    70

    Different influence factors on the magnesium (Mg) uptake in case of three maize hybrids with different long vegetation period have been investigated at the Experimental Station of the University of Debrecen, Centre of Agricultural Sciences and Engineering, at Debrecen-Látókép. The soil of the experiment is a calcareous chernozem, based on loess, with high fertility, that is characteristic for soils of the region Hajdúság.
    Upon irrigation is the experiment divided to main plots, by different hybrids into sub-plots, while treatments of five nutrientsupply levels with fixed N:P2O5:K2O rate (beside control)mean sub-subplots. Soil samples were taken from the upper, cultivated soil layer 3 times during the year 2008. Their pH has been measures in a 0.01 M CaCl2-solution and their Mg-content from the same solution and from ammonium-lactate acetic acid (AL) extract. Plant samples were taken seven times in the vegetation period, of which we measured the Mg-content. Beside this, the during the
    vegetation period by maize biomass extracted Mg-amount has been calculated using fresh and dry matter weights. The effects of irrigation, hybrids and nutrient-supply levels on the soil pH and on the AL- and CaCl2-extractable Mg-amount have been studied, as well. After that I tried to find a correlation between soil pH and the Mg-content of soil determined in different extractants, beside this between the by the two solutions extracted Mg-amount. 

  • The effect of compost made of sheep manure on the first cut of a semi-natural grassland
    25-29
    Views:
    187

    In an experiment, two types of compost were tested on natural grassland in order to improve the productivity of a natural sward on solonetz soil. Both composts were made of on-farm produced sheep manure, but the second one was enriched in phosphorus. These fertilizers/composts are officially authorized and can be applied in organic farming. Zero application and three rates of fertilizer were tested (10 t ha-1, 20 t ha-1, 30 t ha-1) on 30 m2 experimental plots wit four replications. Dry matter, crude protein and net energy content for maintenance were measured and determined and their yields per unit area were calculated. We found that all the treated plots produced significantly higher yield than the control ones, and in some cases the yields were almost three times higher. However, the optimal compost dose varied, depending on the examined parameter. Based on the evaluation of the experiment results along with rainfall data, it was concluded that, with higher precipitation, the positive effect of the compost application was bigger. The difference between the natural and enriched compost is remarkable, but it has to be mentioned that even the natural compost showed good results; therefore, it is also effective in improving the fertility of grassland.

  • Determining elements of variety-specific maize production technology
    157-161
    Views:
    62

    Our aim was to work out such new maize fertilizer methods and models which can reduce the harmful effects of fertilization, can
    maintain the soil fertility and can moderate the yield fluctuation (nowadays 50-60 %).
    The soil of our experimental projects was meadow soil. The soil could be characterized by high clay content and pour phosphorus and
    medium potassium contents. In the last decade, out of ten years six years were dry and hot in our region. So the importance of crop-rotation
    is increasing and we have to strive for using the appropriate crop rotation.
    The yields of maize in monoculture crop rotation decreased by 1-3 t ha-1 in each dry year during the experiment (1983, 1990, 1992,
    1993, 1994, 1995, 1998, 2000, 2003, and 2007). The most favourable forecrop of maize was wheat, medium was the biculture crop rotation
    and the worst crop rotation was the monoculture.
    There is a strong correlation between the sowing time and the yield of maize hybrids, but this interactive effect can be modified by the
    amount and distribution of precipitation in the vegetation period. At the early sowing time, the grain moistures were 5-12 % lower compared
    to the late sowing time and 4-5 % lower compared to the optimum sowing treatment.
    There are great differences among the plant density of different maize hybrids. There are hybrids sensitive to higher plant density and
    there are hybrids with wide and narrow optimum plant densities.
    The agro-ecological optimum fertilizer dosage of hybrids with a longer season (FAO 400-500) was N 30-40 kg ha-1 higher in favourable
    years as compared to early hybrids.
    We can summarize our results by saying that we have to use hybrid-specific technologies in maize production. In the future, we have to
    increase the level of inputs and have to apply the best appropriate hybrids and with respect to the agroecologial conditions, we can better
    utilize the genetic yield potential.

  • The effect of nickel-contamination, nitrogen-supply and liming on the chemical composition of perennial ryegrass (Lolium perenne L.)
    85-92
    Views:
    92

    Plant-production is determined by many production-factors. Each of these factors became subject of research-works through the years, still we state, that studying their interaction is even more important. For studying these interactions we set up a potexperiment, within that the direct effect and the interactions of four factors was inspected: soil, nitrogen-supply, nickel-loading and liming. Experiments were carried out on two soil types with extremely different characters: one was a chernozem soil with good fertility and buffering capacity, the other was a shifting sand soil with low humus-content and buffering capacity. Nitrogensupply and liming was added on two levels, while nickel on three within 12 combinations on each soil types. Plant production was cut two times within the vegetation period. The amount of production and dry matter was weighted, fractured and their element-content was measured by an ICP-detector.
    Ca-content on the shifting sand soil was determined by all three factors, however the interaction between nickel-loading and liming was also significant. Nitrogen and liming increased Cauptake, that is due to appropriate nutrient-supply and improvement of a better pH-value. On the chernozem soil nitrogen and CaCO3 also increased the Ca-content. This is caused by a better nutrient supply and a higher amount of available Ca-ions.
    On the shifting sand soil nickel content was increasing parallel to higher nitrogen-dosages. In presence of higher nickelamount the nickel-content of plants was also increasing, still according to liming, this increment was different. On the chernozem soil nitrogen a nickel increased Ni-uptake. However, liming also had a positive effect on Ni-content, that can be explained by the high amount on colloids in the soil, the adsorption of Ni-ions on them and in presence of liming material the replacement of Ca-and Ni-ions. 
    The potassium-content on the shifting sand soil was different in each liming-combination. In combinations without nickel the potassium-content of limed and not limed combinations was on the same level. In not limed combinations by adding nickel potassiumcontent was increasing, while in limed combinations no change was observed. On the chernozem soil by adding liming material the amount of uptaken potassium was decreasing, that is due to the antagonism between Ca- and K-ions. 

  • Brief overview of the polymorphism analysis of genes affecting pig prolificacy (LEP, PRLP, ESR BF, EGF, FSH-β, H2A.Z)
    5-10
    Views:
    145

    Researches are being performed around the world to increase swine prolificacy by using marker-assisted selection (MAS). The present study processes researches of polymorphism examinations on 7 genes. The result of the experiments showed that the leptin gene (LEP) prolactin receptor gene (PRLP), estrogen receptor gene (ESR), properdin B (BF) epidermal growth factor (EGF), follicle-stimulating beta gene (FSH-ß) and Z member of the H2A histon family gene (H2A.Z) and their alleles have a positive effect on reproductive characteristics of different swine breeds. In addition to this, leptin gene (LEP) influences the build, meat production and growth of body fat. Further studies are concerned with the polymorphism of an increasing number of genes, which enables a faster genetic development of swine breeding.

  • Soil – Environment – Sustainability
    331-337
    Views:
    179

    The future and life quality of human society depends primarily on the success of the sustainable use of natural resources: the geological strata–soil–water–biota–near surface atmosphere continuum. Soil is the most significant conditionally renewable natural resource in our Earth’s system, with three unique properties: multifunctionality; fertility/ productivity; resilience. In the case of rational land use and precise soil management soil does not disappear, and its desirable „quality” does not decrease considerably, irreversibly and unavoidably. Its renewal, however, requires continuous care and permanent activities.
    Consequently, the prevention, elimination or moderation of soil degradation processes and extreme hydrological situations (the two main factors limiting desirable soil multifunctionality) with rational land use and soil management are the key factors and priority tasks of sustainable development on each level and in each phase of the decisionmaking process.

  • The effect of crop rotation and fertilization on wheat and maize in the pedoclimatic conditions of the Banat Plain
    14-18
    Views:
    68

    The simplification of the plant cultures range and the yields in the last 10-15 years brings into the actuality the role of crop rotation and
    of fertilization on the yield level and stability for wheat and maize even on the soils with a high natural fertility. The results of the researches
    performed between the years 2006 – 2009 on a cambic low gleyed chernozem from the Banat Plain showed that the wheat cultivated in
    monoculture gives productions with 59-81% lower than that cultivated in crop rotation with other plants during 2-4 years. In maize, the yield
    obtained in monoculture is situated behind that obtained in crop rotation with 11-21%. The most favorable crop rotations for wheat were
    rape-wheat in a 4 years rotation and soybean-wheat in simple rotation of 2 years. In maize, the most favorable was the 2 years rotation
    (wheat-maize). The mineral fertilization was very efficient both in wheat (11-36%) and maize (9-31%). The organic fertilization with manure
    was very efficient for maize, the yields being superior with a mean value by 34% for a 60 t/ha dose and with 16% for 30t/ha. The fertilization
    compensates the negative effect expressed by the monocultivation only in a small measure

  • Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
    121-126
    Views:
    74

    Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop production for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
    The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
    In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
    On the basis of results the following can be stated: 
    1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
    inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
    2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
    3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
    4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.

  • Change of soil nitrogen content in a long term fertilization experiment
    39-44
    Views:
    136

    The most important aim of sustainable agriculture is to ensure our natural resources – such as soils – protection, which includes fertility preservation and the use of appropriate methods of cultivation.

    If we want to get accurate information about the occurred changes, way and danger of changes, we should track the resupply and effect of the mineral nutrients and the removed quantity of nutrients with the harvest.

    Nitrogen is an essential element for living organisms and it is present in the soil mainly in organic form. In general only a low percentage of the total nitrogen content can be used directly by plants in the soil. The mineral nitrogen is incorporate by plants into our bodies. This inorganic nitrogen is produced by the transformation of organic contents through mineralization processes and it gets into the soil by fertilization. This is how nitrogen turnover occurs when mineral forms become organic and organic forms become mineral.

    The objective of this publication was to introduce – through some element s of nitrogen turnover- how changing the properties of soil in a long term fertilization experiment.

    We established that the fertilization is influenced the soil pH. With the increase of fertilization levels increased the acidity of the soil, maybe it is related with the number of nitrification bacteria. The fertilization and the rotation affected to the quantity of nitrate.

  • Comparison of Reproductive Performance of the Roe Deer (Capreolus capreolus, L.) Among Different Regions
    41-46
    Views:
    79

    The potential and actual number of offspring of roe deer and the difference between these figures (prenatal and postnatal loss) significantly vary in each population yearly. The objective of this study is to examine the potential and actual number of offspring, the number of losses, and to find a link between the most important biological characteristics of does (body weight – BW, condition – KFI) and the number of raised offspring on four territories on the Great Hungarian Plain.
    Where the number of corpora lutea (CL) is the highest, there the losses are the highest as well, and the number of raised offspring is the lowest (region I.). Here, the rearing loss is double that of the weakest territory (region IV.). Rearing losses can be associated with the fenotype of does (BW, KFI) but environmental factors also have determinative importance. Where the number of twin-calving does was the highest, I found four times more does without a fawn than where the number of twin-calving does was the lowest. The nursing success was the best (the losses were lowest) in the region where the potential offspring (number of CL) was also the lowest, but the coverage of the habitat and the proportion of forests were largest. The food supply for the animals in autumn and winter are not enough, the structure of the habitat has to be improved as well, so that it might become adequate for game protection in extreme weather conditions.
    The results have to be considered as preliminary ones. It is essential to continue and extend the research to increase the reliability of the results.

  • Soil biological challenges in our age
    193-196
    Views:
    116

    The paper deals with the soil biological research and its contribution to the changed cropping strategy and to the sustainable and environmentally friendly farming and management. The paper emphasizes the importance of biodiversity, as one of the most important ecological functions of soil. The organisms, populations and communities living in the soil play a key importance in the preservation of soil fertility. The most important research areas are presented dealing with in the last decades the national researchers and the challenges we face regarding the current soil biological problems. We have to prepare to examine the soil biological effectiveness of the more widely spread bio-preparations, bacterium preparations, and bioregulators. The prerequisites are the versatile knowledge of the biological state of soils and monitoring examination of the different effects soils had (including the mentioned preparations).

  • Yield components of hairy vetch (Vicia villosa Roth.) in different sowing technologies on acidic sandy soil
    83-88
    Views:
    242

    Nearly a quarter of the agricultural utilized area of our country is made up of sandy soils. Sandy soils are poor in nutrients, and, therefore, the effectiveness of farming is basically determined by the method of maintaining soil fertility and the fertilization practice.

    The hairy vetch called Vicia villosa Roth (Sandy Roth.), also known as a sand pioneer, plays a significant role in the exploitation of sandy soils. Its cultivation was started in Hungary in the late 1800s. It is primarily used as green fodder, most recently as a green manure and as a soil protection plant. The lupine is grown mainly as a supportive plant, which was previously rye, and today it is triticale. The ratio of the two plants to each other and the spatial location of plants depend on the method of sowing.

    The aim of our work was to present the yields of some of the grain grown in different sowing methods and some of its crops.

  • Effects of cultivation methods on some soil biological parameters of a meadow chernozem soil (Vertisols)
    61-66
    Views:
    76

    The effect of extended drought conditions on soil, the unfavourable cultivation technologies and the application of chemicals have been enhancing the processes of physical and biological soil degradation, so the fertility of soil is gradually declining. 
    The effects of two cultivation methods – traditional ploughing (TP) and conservation tillage (CT) – on the biological activity of a meadow
    chernozem soil were examined in a long term experiment. Different parameters of the biological activity of soil were determined. These are
    the numbers of total bacteria, microscopic fungi, aerobic cellulose decomposing bacteria, as well as the activities of some important soil
    enzymes and CO2 production.
    Conservation tillage seemed to be a more favourable cultivation method for the majority of microorganisms, the activities of urease and
    dehydrogenase enzymes and CO2 production, compared to the traditional ploughing system. These parameters increased significantly,
    especially in the upper layer of conservation tillage plots. Concerning the plant cultures, the majority of microbiological parameters were
    higher in the soil of vetch (Vicia sativa L.) depending on the cultivation methods, so involving the pulses to the crop-rotation seems to be
    very important in this soil type.
    According to the ninth year’s results, the importance of conservation tillage as a means of protecting the soil biological activity in meadow
    chernozem (Vertisols) can be established; it was proven by microbiological investigations.

  • Effect of agrotechnical factors on the activity of urease enzyme in a long term fertlization experiment
    43-48
    Views:
    126

    The soil is a natural resource, the fertility preservation is an important part of the sustainable development. We have to monitor the transformation dinamics of the organic nitrogen-containing substances, to get accurate information about the changes of the nitrogen cycle in the soil.

    Physical and chemical properties of the soil and the microorganism effect on the organic matter in the soil – in addition to the composition of organic matter. Wide variety of extracellular enzymes are present in this decomposition. These enzymes help in the transformation of the macromolecules to transforming low molecular weight compounds so they will be available during the assimilation.

    The urease enzyme, catalyzes the hydrolysis of urea to CO2 and NH3. The urease is widely spread in the nature, it is present in the microorganisms, plants and animals.

    We found that the soil moisture content, the rotation and the fertilization affect to the amount of urease in spring. Furthermore, we get significant difference between the irrigated and non irrigated samples in the second period of the year. Based on our results we can state that the activity of urease was higher in spring 2014.

    The objective of our study was to present how the different agronomic factors affect on the activity of urease in a long term fertilizationexperiment.

  • Nitrogen Supplying Capacity of Brown Forest Soil under Different Cropping Practices and 0.01 M CaCl2 Soluble Organic Nitrogen
    17-23
    Views:
    86

    The best known and most remarkable example of continuous production in Hungary is the Westsik’s crop rotation experiment, which was established in 1929, and is still in use to study the effects of organic manure treatment, to develop models, and predict the likely effects of different cropping systems on soil properties and crop yields. In this respect, Westsik’s crop rotation experiment provides data of immediate value to farmers concerning the applications of green, straw and farmyard manure, as well as data sets for scientific research.
    Although commonly ignored, the release of nitrogen by root and green manure crops has a significant impact on soil organic matter turnover. The design of sustainable nitrogen management strategies requires a better understanding of the processes influencing nitrogen supplying capacity, as the effects of soil organic matter on soil productivity and crop yield are still very uncertain and require further research. In the treatments of Westsik’s crop rotation experiment, nutrients removed from soil through plant growth and harvesting are replaced either by fertilisers and/or organic manure. Data can be used to study the nitrogen supplying capacity of soil under different cropping systems and its effect on the 0.01 M CaCl2 soluble organic nitrogen content of soil.
    The aim of this paper is to present data on the nitrogen supplying capacity of brown forest soil from Westsik’s crop rotation experiment and to study its correlation with hundredth molar calcium-chloride soluble organic nitrogen. The main objective is to determine the effects of root and green manure crops on the nitrogen supplying capacity of soil under different cropping systems. The nitrogen supplying capacity was calculated as a difference of plant uptake, organic manure and fertiliser supply.
    The 0.01 M CaCl2 soluble organic nitrogen test has proved reliable for determining the nitrogen supplying capacity of soils. Brown forest soils are low in organic matter and in the F-1 fallow-rye-potato rotation, the nitrogen supplying capacity was 15.6 kg/ha/year. 0.01 M CaCl2 soluble organic nitrogen content was as low as 1.73 mg/kg soil. Roots and green manure increased the nitrogen supplying capacity of soil by more than 100%. This increase is caused by lupine, a legumes crop, which is very well adapted to the acidic soil conditions of the Nyírség region, and cultivated as a green or root manure crop to increase soil fertility.

  • Comparative analysis of maize weed control system and the competitive effect of sorghum
    97-104
    Views:
    82

    In our investigation we used different weed control technologies in the different phenology states of the maize. The experiment have been
    carried out in Hódmezővásárhely, in the Experiment garden of the Pilot farm of University of Szeged Faculty of Agriculture, on meadow
    chernozem soil, on 24 m2 plots, in 3 replications, randomized blotch design. The experiment can be regarded as 15 weed-control strategies
    where, in addition to the untreated control, six chemicals or chemical-combinations are applied (Spectrum 720 EC, Motivell Turbo D,
    Stellar + Dash HC, Clio + Akris SE + Dash HC, Clio + Dash HC) in five different times (pre, early post, post and two late post) and eight
    mechanical weed-control technologies were used. Hoeing took place connected to the herbicide treatments in different times: until 2-3-leave
    age weedless, in 3-4-leave age hoed once, from 3-4-leave age weedless, in 6-7-leave age hoed once, from 6-7-leave age weedless, in 8-leave
    age hoed once, from 8-leave age weedless.
    Our results were assessed by chemical efficiency examination, maize length measurement, corncob-length and fertility examination,
    Sorghum plant-number determination and yield weighing carried out in four periods. The data were evaluated by a one-factor analysis of
    variance and a two-factor linear regression analysis.

  • Long-term effect of soil management on the carbon-dioxide emission of the soil
    515-527
    Views:
    81

    CO2 emission from soils is one of the most important elements of the global carbon cycle, thus it has crucial rule in climate change. Each soil cultivation operation intervenes in the microbiological life of the soil, hence tillage is a factor through that the processes taking place in soil can be controlled. During the last decades, the organic material content of agricultural soils decreased to the half due to the intensive management resulting in the degradation of natural soil fertility. While intensive, plough-based tillage can cause soil degradation and erosion, the physical, chemical and biological status of the soil can be significantly improved through the application of conservation tillage methods. The results of long-term experiments prove that soil protective tillage enhances the  enrichment of organic matter in the top layer of the soil. In order to reveal the role of tillage systems in CO2 emission from the soil,  regular measurements were carried out in the plots with conventional and reduced tillage of the soil cultivation experiment of Research Institute of Karcag. Anagas CD 98 and Gas Alert Micro 5w infrared gas analysers were used to measure CO2-concentrations, and a specially developed method (consisting of a frame and a bowl) was applied to delimitate the measuring area. Most of the  measurements were done on stubbles after harvest in order to exclude root respiration. The weather conditions of the examined 10 years were very changeable providing a good chance to compare them to each other. We found the tillage operations resulting in  higher emission values in both tillage systems. On stubbles higher and more even emission was characteristic to reduced tillage due to the lower degree of soil disturbance and higher soil moisture content.