Published After
Published Before

Search Results

  • Examination of French bean on organic and conventional farming of Research Centre of Nyíregyháza

    This study presents the yield results of some French bean varieties in organic and conventional farming. This study presents the advantage of organic farming in environmental point of view and in nutrition. Sale of organic products is insured, there is solvent demand rather in abroad than in Hungary.
    In Research Centre of Nyíregyháza had made organic farming since 1994, at present on 74 hectares.
    In the first trial, variety comparison with 9 yellow podded French beans in organic and conventional farming was conducted. Varieties: Carson, Cherokee, Debreceni sárga, Goldmine, Héliosz, Minidor, Sonesta, Sundance és Unidor. The following parameters were observed: the time of emergence and flowering, number of plants per plot, plant height and flowing green harvest. We weighed yield of the standardized, un-standardized and diseased pod fractions. The results were evaluated statistically with SPSS and Excell softwares.
    Emergence had all at once, but the plants of organic farming were 5 days earlier at flowering and maturity, than conventional farming.
    The plants in organic place were more developed than in conventional ones. Emergence was more uniform, the growth and the number of plant were square. Significant difference was not detected in plant height between two places. Most of the varieties examined had better total yield in organic place, than in conventional ones. Deviation depended on variety. ‘Sonesta’ and ‘Debreceni sárga’ had the best yield in both places. In
    conventional farming choice can be expanded with ‘Unidor’ and ‘Sundance’. In organic farming choice can be expanded with ‘Minidor’ and ‘Carson’.
    In both places the Sonesta, Debreceni sárga and Unidor varieties had the most standardized yield per hectare. In organic place Carson variety had good pod yield because it was infected less by diseases.
    In the another trial we studied inside content values of some varieties on organic and conventional places. The parameters were observed: dry matter-, starch-, crude fibre-, crude protein content and amino acid content.
    The rates of asparagin or glutamine acid were the highest, which was followed by serin or histidine. In asparagin content was the most deviation between conventional and organic farming.
    Significant differences were between varieties in dry matter-, starch-, crude fibre-, and crude protein content both on organic and conventional places. Each variety had significant differences between organic and conventional farming.
    Starch had strong and negative correlation with dry matter, crude fibre and crude protein content.
    Budai piaci and Minidor varieties and BU-16 variety candidate had higher starch content and lower dry matter, crude fibre and crude protein content on organic place. Sonesta variety had almost equal dry matter content on both places, but crude protein content was higher with 10% and starch content was lower with 6% on organic place, than on conventional place. Paridor variety had almost equal starch content, but it had higher dry matter and crude protein content on organic place. 

  • The effect of sulphur and nitrogen supply on the growth and nutrient content of spring wheat (Triticum aestivum L.)
    Sulphur is an essential element for plants. Decreasing sulphur deposition from the air, and the use of more concentrated phosphate fertilizers, which contain no sulphur, has led to reports of sulphur deficiencies for wheat. Sulphur deficiency significantly affects yield and also the quality of wheat. The pot experiment was set up on calcareous chernozem soil at Látókép, Hungary, test plant was spring wheat (Triticum aestivum L). Seven treatments were used where nitrogen and sulphur were supplied as soil fertilizers in increasing rates (NS1, NS2, NS3) and in foliar fertilizer as well (NS1+fol., NS2+fol., NS3+fol.). Plant aboveground biomass production was determined in samples taken in the stages of development BBCH 29-30, 51-59, 61-69, 89. The nitrogen and sulphur content of straw and grain were measured. N/S ratios of grain and straw were calculated. The weights of grain were ranging between 8.6–16.1 g/pot. NS2 and NS2+fol. treatments produced the highest values. Foliar fertilizer had no further effect on grain. Analysing the values of the straw, it was observed that tendencies were similar to values of grain. The NS2 treatment produced the highest weight of straw and the NS3 rate already decreased that amount. The obtained results show the unfavourable effect of excessively high rate applied in NS3 treatment. The supplementary foliar fertilizer had no significant influence on the weight of straw. Both N and S-uptake of plant was very intensive at the stem elongation stage, then the N and S-content of plant continuously decreased in time in all treatments. The N-content of grain ranged between 2.215–2.838%.
    The N-content of grain slightly increased with increasing of nitrogen doses. In the higher doses (NS2, NS3) foliar fertilization slightly increased the nitrogen content of grain, although this effect was not statistically proved. The N-content of straw varied from 0.361 to 0.605%. The growing dose of soil fertilizer also considerably increased the nitrogen content of straw. Foliar fertilization further increased the nitrogen content of straw. The S-content of grain ranged between 0.174–0.266%. The lowest fertilizer dose (NS1) significantly increased the sulphur content of grain. The further increasing fertilizer doses (NS2, NS3) did not cause additional enhance in sulphur content of grain.
    The foliar fertilizer also did not change the sulphur value of plant. The increasing amount of soil fertilizer and the supplementary foliar fertilizer had no effect on the sulphur content of straw. The treatments influenced the N/S ratios of grain and straw. On the basis of experimental results it can be concluded that the examined nitrogen and sulphur containing soil fertilizer had positive effect on the growth and yield of spring wheat grown on the calcareous chernozem soil. The soil fertilizer application enhanced the grain nitrogen and sulphur content. The highest rate of fertilizer (600 kg ha-1) proved to have decreasing effect on the yield. The sulphur and nitrogen containing foliar fertilizer did not have significant effect on the yield parameters but slightly increased the nitrogen content of plant.
  • Effect of arsenic treatments on the element content of green peas

    The agricultural environment is contaminated with heavy metals and other toxic elements, which means more and more threats. One of the most important toxic element is the arsenic (As).
    The objective of the study was to investigate the effect of As-treatments on the element content of the different parts of the green peas (root,stem, leaf, pod, pea) in the 4. phase of the plant development. Plants were grown in green house. Arsenic was applied in a form of arsenate (As[V]) and the plants were treated with 0, 3, 10, 30, 90 and 270 mg kg-1 arsenic.
    According to the results the Ca content of root and pod was increased in the case of the 3 mg kg-1 As-treatment, after that decreasing tendency was observed. In the case of the 270 mg kg-1 As-treatment, the Ca content in the root was increased, because some element is able to concentrate in the lower biomass. The Ca-content of stem and leaves was reduced when the plants were treated with more than 30 mg kg-1 As. The lowest As-treatment (3 mg kg-1) increased the Na content in the root, stem and leaves, however in the case of the higher As-dose, decreasing tendency was observed. In the case of the generative plant parts the 3 mg kg-1 As-treatment also increased the Na content, nevertheless in the case of the higher As-treatments lower Na content was measured, however in the case of the highest As-treatment (270 mg kg-1) the Na content was increased in the generative plant parts, probably the Na was concentrated in the lower biomass. In the case of the 90 and 270 mg kg-1 As-treatment the Mo-content also was increased in the generative plant parts. The 270 mg kg-1 As-treatment caused a similar tendency in the case of the generative plant parts as a result of the lower biomass. In the case of the pod and leaves, the lower As-doses did not cause significant changes.
    The Mo content was increased in the root and pea when the plants were treated with 3 mg kg-1 As, but in the case of the higher treatments it was decreased. In the case of the stem it was reverse, the lowest As-tretament (3 mg kg-1) decreased, nevertheless the further As-doses increased the Mo content.

  • The application of bentonite and zeolite for soil amelioration in acidic sandy soil

    In a pot experiment, we have studied the effect of bentonite and zeolite in different dosages [control; 5; 10; 15; 20 g kg-1] on acidic (pHH2O=5.65) humus sandy soil. The experiment was set up in 2007 and 2008 in the greenhouse of the UD CASE Department of Agrochemistry and Soil Science. As a test plant, perennial ryegrass (Lolium perenne L.) was used. 
    In laboratory examinations, pH(H2O), pH(KCl), hidrolytic acidity, nitrate-N content, readily available phosphorus and potassium content were determined. Among soil microbial parameters, the total number of bacteria, the cellulose-decomposing bacteria, the carbon-dioxide production, the microbial biomass-C content of soil, and the saccharase enzyme activity were measured. In the experiment the biomass of the test plant was determined.
    The effect of bentonite and zeolite in different dosages can be summarized as follows:
    − The pH increased under the effect of low dosages. With the increasing of the pH the hydrolytic acidity - at the bentonite treatments significantly – decreased. 
    − Regarding the readily available nutrient content of the soil, low and medium dosages proved to be effective. High dosages of bentonite treatments reduced the nitrate-N content, the readily available phosphorus, and potassium content of soil, by zeolite treatments the high dosages reduced the nitrate-N content of soil. 
    − Regarding the measured soil microbial parameters in both treatments low and medium dosages proved to be also effective, but the high dosages didn’t cause decreasing at the total number of bacteria, and by zeolite treatments the biomass-C content of soil.
    − Also the bentonite and zeolite treatments enlarged the biomass of the test plant. We experienced significant increasing by bentonite treatments by the effect of medium and high dosages, while in zeolite treatments only the high dosage caused significantly increasing in plant biomass. The largest dosages decrease the plant biomass. 
    − Under the statistical analysis we found many medium and tight correlation between the studied parameters. 

  • Evaluating changes in nitrogen and sulphur content in a soil-plant system in a long-term fertilization experiment

    The objective of this study was to evaluate the impact of long term NPK fertilization (considering that S containing superphosphate was supplied for 26 years of experiment, but since 9 years S has not used any longer) on sulphur- and nitrogen content and N/S ratio of winter wheat. The second objective of this work was to determine the changes of the amount of the different nitrogen and sulphur fraction in chernozem soil in a long term fertilization experiment. The third aim of the work was to determine if a relationship could be established between the studied parameters. Based on our results, it can be stated that the sulphur containing superphosphate supplied in the period of 1984-2010 has no longer significant effect on total sulphur content of plant in 2018. The NPK fertilization treatments had positive effect on total nitrogen content of winter wheat. In general, increasing NPK doses resulted in significantly higher nitrogen. The effect of irrigation applied in previous years has no statistically significant effect on the sulphur and nitrogen content of wheat. The wheat grain produced in our experiment, especially in fertilized treatments showed S deficiency. Analysing the changes of CaCl2 soluble nitrate-N and total N of the soil, it can be stated that the effect of increasing fertilizer doses clearly appears in these parameters, because the treatment with increasing fertilizer doses resulted higher CaCl2 soluble N forms compared to the control treatment in soil. These values increased until flowering stage of wheat and after that a slightly decrease was observed as a result of higher N uptake of plant. In overall, it can be stated, that the effect of superphosphate on measured sulphur fraction is prevailed. With increasing fertilizer doses higher sulphate content was detected in soil, but the sulphate content measured in different soil extractant is not enough for the wheat in this experiment area. Studying the correlation between the measured parameters of plant and soil, it can be concluded, that the relationships between nitrogen in the plant and in the soil is stable, and did not change during the growing season. The correlation between plant S and soil S varied in the measured periods and the r value was low in most cases. At the stage of flowering the highest r value was found between KCl-SO4 and plant S. In the stage of ripening the strongest correlation was detected between KH2PO4-SO4 and grain S content.

  • The Effect of Sowing Time and Plant Density on the Yield of MaizeHybrids

    The crop technology of maize has two important elements, sowing time and plant density. In 2003 and 2004 we studied the effect of these two factors on the growth and production of maize in an experiment carried out near Hajdúböszörmény.
    The soil of the experimental plots was meadow soil.
    Weather in both years was differed greatly. 2003 was drought. Neither the distribution nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
    In 2004, we could talk about a favorable and rainy season. The distribution and quantity of precipitation was suitable between April and September. The average temperature was also suitable for maize.
    Results of the sowing time experiment:
    In 2003, we tested seven hybrids at four sowing times. Hybrids in the early maturity group gave the highest yield at the later sowing time, while the hybrids of the long maturity group gave it at the earlier planting time. The yield of PR34B97, PR36N70, PR36M53 hybrids was the best at every planting time. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
    In 2004, we examined the yield and seed moisture content of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing time. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time than at the later.
    The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.
    Results of the plant density experiment:
    We tested the reaction of hybrids at four plant densities (45,000, 60,000, 75,000 and 90,000 stock/ha) every two years. In 2003, the tested seven hybrids reached the highest yield at the 90,000 stock/ha in the face of a droughty year. The effect of forecrop and favorable nutrients caused these results. In the rainy 2004 year, the yield grew linear with the growing plant density. The yield of the best hybrids were 14-15 t/ha at the 90,000 stock/ha.
    Such a high plant density (90,000 stock/ha) couldn’t adaptable in farm conditions in rainy season. It is practical to determine the interval of plant density besides the optimum plant density of hybrids which gave correct yield. The farmers have to use the low value of this interval due to the frequent of the droughty years.

  • Changes in fatty acid composition of pork rich in conjugated linoleic acid frying in different kind of fats

    In 1990ys antiatherogen, antioxidant and anticarcinogen effect of conjugated linolacids (CLA) was detected. From this reasons, our aims in this study were producing pork rich in CLA and studying the change of fatty acid composition of the produced pork cooked different kind of fats. For frying palm and sunflower oil and swine fat were used. Thigh was cutted for 100 g pieces. Meat pieces were fried at 160 °C for 1 and 8 minutes. Estimation of frying data it was determined that higher (0.13%) CLA content of pork was spoiled (60-70%) except in case of swine fat cooking,
    because it is extremly sensitive for oxidation and heating. Swine fat has higher (0.09%) CLA content than plant oil, protecting the meat’s original CLA content. Cooking in swine fat did not have significant effect on fatty acid composition of meat. Low level of palmitic acid contect of sunflower oil (6.40%) decreased for half part of palmitic acid content of pork (24.13%) and it produced cooked meat with decreased oil acid content. Contrary of above, linoleic acid content of fried meat was increased in different folds as compared to crude pork. If it was fried in sunflower oil with high level linoleic acid increased (51.52%) the linoleic acid content in fried pork. The linoleic acid content of the high level CLA pork increased four times (48.59%) to the crude meat (16.59% and 12.32%). The high palmitic acid content of palm fat (41.54%) increased by 60% the palmitic acid content in fried pork, low stearic acid (4.44%) and linoleic acid content (10.56%) decreased the stearic and linoleic acid content of crude meat.

  • Changes of relative chlorophyll content at maize smut inoculated hybrids

    The leaf chlorophyll content analysis is important for several reasons. The natural or anthropogenic stressors directly effect on the chlorophyll content. Through the measurement of the chlorophyll content it is possible to obtain data concerning the physiological status of the plant, moreover the chlorophyll content is closely related to the nitrogen content, so it is linked to photosynthesis and the photosynthetic activity which determine biomass production.
    One of the most common symptoms of plant diseases is the larger and smaller interveinal chlorotic areas. These might be local, or expand to the whole plant. There are multiply reasons of chlorosis such as reduction of chlorophyll content, unfavorable effects on the chlorophyll content,disorders regarding function of chloroplasts or ultimately destruction of the chloroplasts. Although such a chlorotic deviancy can contribute to significant losses in photosynthesis; however the underperformance photosynthesis of the sick plants is a more complex process.
    As we unambiguously experienced during our investigations on common smut that the infected maize plants most common accompanying symptom was chlorosis on the leaves, so it is especially important to examine how the infection influenced on the chlorophyll content of different hybrids.

  • Studies of the effects of N fertilizers and Microbion UNC biofertilizer on microelement content of horseradish (Armoracia macrocarpa)

    A field experiment on calcareous chernozem soil was performed to study the effects of different N and bacterial fertilizers on the nutrient content of horseradish (Armoracia macrocarpa). In the experiment the trials were arranged in a randomized block design with three replications, applying three levels of NH4NO3 and different N fertilizers, namely ammonium-nitrate, urea and calcium-nitrate, with or without application of Microbion UNC biofertilizer.
    In the present paper the changes and distribution of manganese, zinc and copper contents of the horseradish plant are summarized by the
    effect of different treatments.
    The Mn content of leaves were higher in all cases than those of roots, but Zn mainly accumulated in the roots. The distribution of copper within the horseradish plant was more equalized than that of Zn and Mn. Different N fertilizers and increasing doses of ammonium-nitrate had effects mainly on the microelement contents of leaves. The highest Mn contents of plant were measured in treatments of Ca(NO3)2 and Ca(NO3)2+Microbion. The lowest ammonium nitrate dose (N1) decreased the Mn content of leaves compared to control, but further doses
    (N2, N3) did not alter these values any longer. Microbion UNC biofertilizer did not have any effect on the Mn content of roots, but we measured higher Mn in leaves in some combined treatments. Ca(NO3)2 increased the zinc content in leaves and roots in a noticable manner. With the increasing of NH4NO3 doses, the Zn content of leaves and roots augmented significantly. Neither N fertilizers (or the increasing doses of NH4NO3) nor the biofertilizer application influenced the Cu content of horseradish plant. 
    N fertilizers had higher effects on the microelement content of horseradish, the biofertilizer’s effect was smaller and was not the same in every treatment.

  • Effect of soil-compost proportion on the abiotic and biotic parameters of soilplant system

    The environmental awareness, coming to the front in the 21st century, motivates us to supply the plant nutrient demand (in point of the plant, the environment and the human health) with natural materials.
    Composting is known since the beginning of civilization. We came to know more the processes of composting as a result of last decades’ research, but numerous unexplained questions remained up to this day. The good compost is dark gray or brown, and it should not create an odor. It has aggregate structure, and it’s pH is neutral. Compost is soil-like (Fehér, 2001), nutrient-rich material, which contains valuable nutrients extracted from soil, so if we recycle this, we can decrease the chemical fertilizer and other (example: mineral energy) expenses.
    The reason of that we chose the more accurate cognition of compost utilization is to do more effective the site-specific nutrient supply. This increases the average yield and the quality of yield. Besides we can decrease the harmful effects, which endanger the plant, the environment, and the human body.
    During the compost utilization experiment we blended the  acid sandy soil with compost in 4 different volumetric proportions (5 treatments) than we set the pots randomized. The advantage of this method is that we can provide equal conditions for plants so we can measure the effect of  treatments correctly. Our experimental plant was ryegrass (Lolium perenne L.), that grows rapidly, tolerates the glasshouse conditions, and indicates the effect of treatments well. After the harvest of ryegrass we measured the fresh and dry weight of harvested leaves and the total C-, N-, S-content of the dry matter and of the soil, we examined the pH and the salt concentration of  soil as well. 
    Our aim was to study and evaluate the relations between the compost-soil proportion and the nutrient content of soil and plant. In our previous experiments we confirmed (based on variance analyses) that the compost has a beneficial effect on soil and increases the nutrient content of the soil (Szabó, 2009). But it’s important to appoint that the compound of compost is seasonally change: in winter the selective gathered municipal solid waste contains salt that were applied for non-skidding of roads, but salt has a negative effect to the plant. We proved that in our experiment the 25/75% compost/soil proportion was ideal for the plant. This content of compost effected 6 times higher green matter weight compared to the 100% sandy soil. 

  • Development of maize production technology that increase the efficiency of bioethanol production

    Maize is one of the most important crops worldwide and also in Hungary, it can be utilized for multiple purposes: as a feedingstuff, for human nutrition and for industrial processing. In the last decades, the per ha yield of maize varied greatly in Hungary, between 2004 and 2006, it was 6.82-7.56 t/ha, while in 2007, it was only 3.6 t/ha. Resulting from this, the price of maize became 2-2.5 times higher. The high price hinders bioethanol production. The largest per ton amount of bioethanol, 387 l, can be produced from maize.
    In addition to its classical utilization as feed and food, the industrial use (especially for bioethanol production) of maize is increasin.
    For industrial production, a new production technology is needed. I tested and selected hybrids appropriate for this purpose and set up fertilization and plant density experiments. The experiment were set up on chernozem soil in 2007.
    The applied fertilization treatment was N 120, P2O5 80 uniformly, and five different dosages of potassium: K2O 0, K2O 100 (KCl), K2O 100 (Kornkáli), K2O 200 (KCl), K2O 200 (Kornkáli) kg/ha active ingredient. The applied plant densities were 40, 50, 60, 70, 80, 90 thousand plants/ha.
    The yield of maize hybrids in the fertilization experiment ranged between 10.53 – 14.62 t/ha. Both regarding the form and dosage, 100 kg/ha Kornkáli proved to be the best potassium treatment. Regarding the inner content parameters, the highest starch content in the average of treatments was obtained for the hybrid PR36K67: 73.57%, and its yield was also the highest, so this hybrid proved to be the most suitable for bioethanol production. The highest protein content was observed for the hybrids KWS 353 (12.13%), which can be favourable for feeding purposes.
    Most of the hybrids gave the highest yield at 80 thousand plants/ha plant density, however, hybrids PR36K67 and Mv Tarján achieved the highest yield at 90 thousand plants/ha.
    In bioethanol production, the selection of a high-yielding hybrid with high starch content, a slight reduction of N, increase of potassium, the application of the highest plant densities of the optimum interval, harvest at full maturity (when starch content is the highest compared to protein content) are of great importance. 

  • Comparative examination of a bacterium preparation (BACTOFIL® A10) and an artificial fertilizer [CA(NO3)2] on calcareous chernozem soil

    In a small-pot experiment a bacterium preparation, Bactofil® A10 and an artificial fertilizer containing Ca(NO3)2 in different dosages were studied on calcareous chernozem soil, concerning the readily available nutrient content of soil (nitrate-nitrogen, AL-phosphorus, ALpotassium content of soil, some soil microbial characteristics (total number of bacteria and fungi, cellulose-decomposing and nitrifying bacteria, CO2-production of soil), and the amount of the plant biomass.
    The readily available nutrient content of the calcareous chernozem soil increased due to the treatments, except for the change in the soil nitrate-nitrogen content, which did not measure up to the control due to the effect of high-dosage Bactofil.
    The treatments also influenced the examined microbial characteristics of the soil positively. The artificial treatments significantly increased the total number of bacteria and the number of cellulose-decomposing and nitrifying bacteria. The low-dosage Bactofil significantly increased the number of cellulose-decomposing bacteria and both Bactofil dosage significantly increased the number of nitrifying bacteria. The measure of the soil respiration grew in all treatments, but significantly only in Ca(NO3)2 fertiliser treatments.
    The quantity of the plant biomass was grew in a low-dosage Bactofil and significantly in the artificial fertiliser treatments. The highest plant biomass quantity was measured in the high-dosage artificial fertiliser treatment.
    In the correlation analyses we found some medium positive correlation between the soil chemical, microbiological parameters examined, and the plant biomass in the case of both treatment-forms. 
    Based on our results Ca(NO3)2 artificial fertiliser treatments on calcareous chernozem soil proved to be more stimulating regarding the
    examined soil characteristics and the amount of the plant biomass, but the low-dosage Bactofil also positively influenced the majority of the
    soil characteristics examined in terms of nutrient supply.

  • Influences of different organic fertilizers on nutrients of humic sandy soil and on the growth of Spinach (Spinacia oleracea L.)

    A greenhouse pot experiment was conducted to compare the effects of manure with different origin (horse, cattle), various bedding materials (straw, sawdust) and diverse doses (30 t ha-1, 60 t ha-1) and the impact of food waste compost on the plant growth and the available plant nutrient content of soil. The study was conducted on humic sandy soil and consisted of 9 treatments in a randomized complete block design with four replications. Spinach (Spinacia oleracea L.) was grown as the test crop. The treatments were: 1. unfertilized control; 2. horse manure with straw (30 t ha-1); 3. horse manure with sawdust (30 t ha-1); 4. cattle manure (30 t ha-1); 5 food waste compost (30 t ha-1); 6. horse manure with straw (60 t ha-1); 7. horse manure with sawdust (60 t ha-1); 8. cattle manure (60 t ha-1); 9. food waste compost (60 t ha-1). Plant growth was monitored for 4 weeks. Shoot and root weights per pot were measured, total biomass weight per pot were counted.

    On the basis of the results it can be concluded, that among treatments the application of horse manure with straw enhanced spinach growth most significantly compared to other treatments and to the non-treated control, resulted the highest weights of leaves and roots of spinach. At the same time even small dose (30 t ha-1) of this fertilizer caused increased plant available nitrogen and phosphorus of soil and the higher dosage further increased these values. The horse manure with sawdust applied in lower dose did not alter the leaves and roots weights, but higher portion (60 t ha-1) caused significantly decreased plant biomass. The results proved that the bedding material may significantly alter the composition of manure and may change the plant nutrition effect of organic fertilizer. Cattle manure and food waste compost in both applied doses enhanced plant growth. Both fertilizers increased the plant available nitrogen forms and phosphorus content of soil, but cattle manure caused higher increase.

  • Effects of water deficit on the growth and yield formation of maize (Zea mays L.)

    Maize (Zea mays L.) is the most important consuming cereal crop in the world after rice and wheat. This requires an understanding of various management practices as well as conditions that affect maize crop performance. Water deficit stress during crop production is one of the most serious threats to crop production in most parts of the world and drought stress or water deficit is an inevitable and recurring feature of global agriculture and it is against this background that field study of crops response to water deficit is very important to crop producer and researchers to maximize yield and improve crop production in this era of unpredicted climatic changes the world over.
    A pot experiment was carried out to determine the effects of water deficit on growth and yield formation of maize. Two maize cultivars were used Xundan20 and Zhongdan5485. Three levels of soil water content were used in two stages of water control levels at two stages of the maize plant development
    1. The JOINTING STAGE: A. CONTROL (CK) soil water content: from 70% to 80% of soil water holding capacity at the field, soil water content: from 55% to 65% of soil water holding capacity at the field, soil water content: from 40% to 50% of the Soil water holding capacity at the field.
    2. The BIG FLARE PERIOD: A. CONTROL (CK) soil water content: from 75% to 85% of soil water holding capacity at the field, soil water content: from 58% to 68% of soil water holding capacity at the field, soil water content: from 45% to 55% of the soil water holding capacity at the field.
    This research mainly studied the effects of water deficit on physiological, morphology and the agronomical characteristics of the maize plant at the different water stress levels.
    The importance of these results in this experiment will enable plant producers to focus and have a fair idea as to which stage of the maize plant’s development that much attention must be given to in terms of water supply.

  • Grain yield and quality of maize hybrids in different FAO maturity groups

    An improvement in the quality of maize grain by increasing the level of components responsible for its biological value is possible
    by using genetic means. However, a change in the genotype, together with improving the nutrient properties of the grain, also has some
    adverse consequences connected with a fall in yield and in resistance to diseases.
    Field experiments were conducted during three years (2003, 2004and 2005) to evaluate environmental effects on grain yield and
    quality responses of maize hybrids. Twenty one hybrids of various maturity groups (FAO 150-400) were planted to achieve an optimum
    (60-70 000 plants per hectare) plant populations and grown under the medium-N (80 kg N ha-1) fertilization. Environmental conditions
    significantly affected maize hybrid responses for grain yield, starch, oil and protein contents, and consequently, starch, oil and protein
    yields per hectare. Hybrids of flint type, which have a short vegetation period, had high protein and oil content but the yield averages
    were low due to the slower rate of starch incorporation. Hybrids of the dent type have a longer growing season and more intense
    carbohydrate accumulation, but low protein and oil contents. In wet years there was a higher rate of starch accumulation, while dry
    years are favorable for protein and oil accumulation. Positive correlation existed between starch content and grain yield and 1000-
    weight as well as between oil content and volumetric weight among tested hybrids. Negatively correlation existed between grain oil and
    starch content as well as between oil content and grain yield and 1000-weight. Thus, end-users that require high quality maize may need
    to provide incentives to growers to off set the negative correlation of grain yield with oil and protein content.

  • The effect of hybrid, nutrient-supply and irrigation on the grain moisture content at harvest and the starch-content of maize (Zea mays L.)

    Maize is a worldwide dominant plant. According to nowadays plant production principles it is important to investigate and optimize the site-specific nutrient-supply and other production factors, such as hybrid and irrigation, in the case of this plant as well.
    At the Research Institute of the University of Debrecen, Center of Agricultural Sciences and Engineering, at Látókép the effect of nutrient-supply and irrigation on the quantity and quality parameters of different hybrids were investigated in a small plot long-term field experiment. In this paper we introduce the results regarding the corn moisture-content and the starch content of the yield.
    We have chosen three maize hybrids – that have been bread in Martonvásár – for our investigations. The effect of macronutrients is investigated in this experiment on five levels. The half of the experimental area can be irrigated during the vegetation period – whenever it is needed – by linear irrigation equipment, but on the other half only the water amount originating from the precipitation can be used by plants.
    In the year 2008 the hybrid affected the grain moisture content at P=0.1% level, while nutrient-supply had an effect at P=10% significance level. We haven’t revealed either any effect of irrigation or of interrelationship between production factors. It can be stated that there are differences between the hybrids on each nutrient-supply and on both irrigation levels. The grain moisture content increased parallel to the longer vegetation
    The starch content of maize is mostly affected by the hybrid,
    so on P=0.1% significance level. Regarding our results, it can be
    stated, that the starch content shows a decreasing tendency
    parallel to the longer vegetation periods.

  • Effect of sowing technology on the yield and harvest grain moisture content of maize (Zea mays L.) hybrids with different genotypes

    From the aspect of the efficiency of maize production harvest grain moisture content shall be considered beside the amount of harvested grain yield. Hybrids with different genotypes and vegetation period length lose their moisture content different that is affected by row spacing and plant density – among agrotechnical production factors – depending on the given crop year. In the present research work three crop years with different weather conditions were studied (2013, 2014, and 2015). The small-plot field experiment was set up at the Látókép Field Research Centre of the University of Debrecen, Centre for Agricultural Sciences with four replications on a chernozem soil type. The effect of three factors was analysed in the experiment on yield amount and its moisture content. Factors were row spacing (45 and 76 cm), plant density (50, 70 and 90 thousand plants ha-1), while hybrids were of very early (Sarolta: FAO 290), early (DKC 4014: FAO 320, P 9175: FAO 330, P 9494: FAO 390) and medium (SY Afinity: FAO 470) ripening.

    In the crop year of 2013 the highest yield was produced – regarding the average of the hybrids – by the application of a row spacing of 45 cm (4.5%, 673 kg ha-1), however there was no significant difference between the yield of the populations of different row spacings. Significant difference (14.9%, 1751 kg ha-1; 6.3%, 583 kg ha-1) could be found in case of yield between different row spacing applications in 2014 and 2015. The effect of insufficiently distributed low amount of precipitation and lasting heat days in 2015 could be revealed in yield amounts and harvest grain yield moisture content results that were lower than in the previous years. In 2015 grain yield moisture content varied between 10.3 and 13.9% in case of a row spacing of 45 cm, while by 76 cm between 11.0 and 13.9%.

  • Investigating the above-ground biomass values of sweet potatoes (Ipomoea batatas)

    The role of sweet potato tubers in human nutrition is not new. The above-ground biomass of sweet potatoes is not used for nutritional purposes in most countries, but it has a high biological value. Therefore, the aim of the present study is to investigate the production of press fibre from above ground biomass by wet fractionation. Two sweet potato varieties (purple- and white-fleshed sweet potato) and two types of irrigation system were used: bubbling water flow system (BWS) and continuous water flow system (CWS). Glucan, xylan, arabinan were analysed by HPLC and elemental content was measured by ICP-OES. Our results show that the total carbohydrate content in the pressed fibre of the leaf blades (27.64–29.88 %w/w) is lower than in the stem with petiole (51.14–57.36 %w/w). No significant difference in glucan, xylan and arabinan content was observed in the leaf blade. In the stem with petiole, significant differences were observed for xylan and arabinan contents. For elemental content, generally higher values were measured in the leaf blade than in the stem with petiole. This information may be relevant for the selection of the appropriate variety and treatment, even for the production of functional food.

  • Impact of nitrogen and sulphur fertilization on the growth and micronutrient content of spring wheat (Triticum aestivum L.)

    Micronutrients are as important as macronutrients for crops. Each micronutrient has its own function in plant growth. Zinc is important for membrane integrity and phytochrome activities. Copper is an essential micronutrient required for the growth of wheat. Manganese is required for enzyme activation, in electron transport, and in disease resistance. The pot experiment was set up in greenhouse on calcareous chernozem soil Debrecen-Látókép with a spring wheat. In certain development stages (according to BBCH growth scale of wheat), at the beginning of stem elongation (29–30), at the heading (51–59), at the flowering (61–69) stage three average plants were removed from all pots for analysis. Fresh and dry weight of the plant samples were measured. Plant leaves after drying were digested by HNO3-H2O2 methods and manganese, zinc and copper contents of plant were quantified by atomic absorption spectrophotometry. At the flowering stage, when the nutrient uptake of plants is the most intensive, the weight of wheat ranged between 0.94–1.57 g plant-1. In this development stage, the NS2 treatment produced the highest weight of wheat, and compared to this the NS3 treatment decreased that value already. The results show unfavourable effect of NS3 treatment. On the basis of microelement content of wheat and the weight of a plant, nutrient uptake by plant were calculated. At the beginning of growth the starter treatment had positive effect on Cu-uptake compared to the NS1 treatment, where the same dose of fertilizer was stirred into the soil. Wheat is very sensitive to copper deficiency, so copper dissolved by starter treatment could be favourable to the early development of wheat. At flowering stage the Zn-uptake of wheat became the highest and it was between 133.7–234.6 mg plant-1. The Mn-uptake of wheat plant was higher than the Cu- and Zn-uptake of wheat.

    This phenomenon can be explained by the fact that the untreated soil had higher Mn-content, than Cu- and Zn-content. To summarize the results, it can be stated, that the copper uptake of wheat was more affected by the different treatments in the stage of stem elongation, while Mn- and Zn-uptake of wheat were influenced primarily in the stage of heading and flowering.

  • The significance of biological bases in maize production

    The comparative trial has been set up in the Demonstration Garden of the Institute of Crop Sciences of the University of Debrecen, Centre for Agricultural and Applied Economic Studies, Faculty of Agricultural and Food Sciences and Environmental Management in 2012, with 24 hybrids with different genetic characteristics and growing periods. The soil of the trial is lime-coated chernozem, with a humus layer of 50–70 cm.

    The weather of the trial year was quite droughty; the monthly average temperature was 3–4 oC higher than the average of 30 years. High temperature, together with lack of precipitation occurred during the most sensitive phenophases of maize (flowering; fecundation, grain saturation).

    The following characteristics have been observed: starting vigour, date of male and female flowering, plant and cob height, dry-down dynamics during maturation and the change of yield composing elements has also been quantified. The yield was recalculated to 14% moisture content grain yield after harvesting.

    The beginning of the growing period was advantageous, therefore the analysed hybrids could grow a high (above 300 cm) and strong stem. The yield of the hybrids changed between 10.33 and 11.87 t ha-1, but as a result of the unfavourable climatic extremes, their genetic yield potential prevailed only at a rate of 30–40%. However, moisture content by the time of harvesting was good despite its early date (12th September); it remained under below 14% in most cases. Dry-down was measured on a weekly basis between 14th August and 5th September.

    The analysis of the qualitative parameters of the maize hybrids (protein %, oil % and starch %) resulted in significant differences. The most significant difference has been observed in the case of protein content (LSD5%=2.01). Oil content was the most advantageous in the case of hybrids belonging to the mid-late growing group (FAO 400). The X9N655 and 36V74 hybrids had the highest oil content (around 4%), while hybrids P9915 and 37F73 had significantly lower oil content. Starch content was above 70% in the case of every hybrid.

    Hybrid selection is highly important in terms of yield and yield security of maize, as well as the application of modern biological fundamentals and hybrid specific technology for the improvement of the level of cultivation technology.

  • The effect of sowing time on the yield and the variance of the seed moisture content a harvest of maize (Zea mays L.) hybrids

    Sowing time is an important crop technology element of maize. We studied the effect of this factor on the growth and production of maize in an experiment carried out near Hajdúböszörmény, in 2003 and 2004, and near Debrecen, in 2005.
    The soils of the experiments were humic gley soil and chernozem. Weather in both years differed greatly. 2003 was drought. Neither the distribution, nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
    In 2004 and in 2005, there were favorable and rainy seasons. The distribution and quantity of precipitation were suitable between April and September. The average temperature was also suitable for maize.
    In 2003, we tested seven hybrids at four sowing times. Hybrids with a shorter vegetation period gave the highest yield at the later sowing time, while the hybrids with a longer vegetation period gave them at the earlier sowing time. The yield of PR34B97, PR36N70, PR36M53 hybrids were the best at every sowing times. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
    In 2004, we examined the yield and seed moisture contents of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing times. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year, due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time, than at the later.
    In 2005, we applied three sowing times. Unfortunately, the results of the third sowing time could not be analyzed, due to the low plant density. The yield of the six hybrids varied from 12 to 14 t/ha at the first sowing time. At the second sowing time, the yields fluctuated and each hybrid had the lowest yield, except the PR37D25 hybrid. At the latest sowing time, the yield of the PR34B97 hybrid was the lowest. However, this low yield was due to damage from the Western corn rootworm (Diabrotica virgifera) imago. The moisture content at harvest of the hybrids varied from 16 to 24% at the first sowing time. Yields at the second sowing time were higher. The low yield of the PR34B97 hybrid coupled with a higher seed moisture content. In addition, the maximum value of the LAI was more favourable at the first sowing time, and ranged between 5-5.5 m2/m2.
    The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.

  • Microbiological and Chemical Characterization of Different Composts

    Composting of agricultural waste is considered particularly important from the point-of-view of environmental protection. Degradation of organic substance results in a significant reduction of waste volume.
    The end product of the composting process, mature compost, can be used as soil coverage against excess loss of wastes, for mulching, for organic manure etc. The problem of composting has come into limelight in environmental studies and in agriculture.
    The quality of the mature compost is determined by physical, chemical and biological parameters of the composting process which, in turn, depend on initial composition of the raw materials, the technology, e.g. regular mixing and moistening and on environmental factors. Quality is the key question in compost use.
    We studied the composting process in compost windrows of different raw material composition. We measured temperature, humidity content, pH, organic substance content, nitrogen and carbon content.
    We counted the number of bacteria, microscopic fungy, ammonifying and cellulose decomposing microorganisms. We directed the composting process with turning weekly (to provide oxygen) and watering (to provide humidity content 40-60%).
    We set up windrows of 1 m3 volume from dry plant substances (cornstalk, pea straw, tomato stalk and crop, weeds) and cow manure not older than 1 week. The cow manure was used at ratios of 0%, 35%, 50%, 65% and 100%, respectively.
    We measured changes in compost temperature relationship with outside temperature until they were almoust the same. Humidity was 40-60% in most cases.
    At the beginning of the process, pH was slightly acidic-neutral; it later becomes neutral-slightly alkaline (pH: 6.93-8.02) as ammonia is liberated from proteins.
    At the end of the process, pH decreased again, due to humification.
    Organic substance content decreased as microorganisms mineralized them. Organic carbon content decreased gradually due to microorganisms used it as an energy.
    Total nitrogen content increased until middle of july and decreased gradually until than.
    The carbon/nitrogen rate were higher in the beginning, it decreased until july-august and increased by smaller degree until end of the process.
    The number of bacteria was higher in the first three weeks and between june-september. The number of cellulose degrading bacteria was the highest in the first three month, the number of ammonifying bacteria was the highest from the end of may until sepember.
    The number of microscopic fungy was significant in the second part of process, after july.

  • Effect of season and sowing time on the moisture loss dynamics and yield of maize

    The effect of sowing date on maize development and yield was studied in field experiments. The experiment was set up at the experimental garden of the University of Debrecen Centre of Agricultural Sciences Faculty of Agriculture, Department of Plant Sciences in 2005 and 2006 on calcareous chernozem soil. Six hybrids with different genetic characteristics and vegetation period were tested (Sze 269, DK 440, PR37D25, NK Cisko, Mv Maraton, PR34B97) at three different sowing dates.
    2005 was a very wet year. The amount of precipitation in the vegetation period was about 150 mm higher than the average of 30 years. No significant differences were observed in temperature. However, the number of sunny hours was much lower during the summer than as usual. This had an influence on yields.
    In 2006, there was no risk of inland water in spite of the large amount of precipitation at the beginning of the year. The amount of water available for plants was satisfactory during the season due to the favorable amount of precipitation. Therefore, plants suffered less from the heat in July. However, hail on 22 July caused significant damage. The number of sunny hours in the summer was high enough. The warm, dry autumn helped the water release of plants.
    In 2005, the results of the third sowing date could not be evaluated due to the large number of missing plants. The yield of hybrids ranged between 12-14 t/ha for the first sowing date. For the second sowing date, yields ranged between wider boundaries. The hybrid PR37D25 has a very high yield in the case of the second sowing date, and its seed moisture content was favorably low. The yield of hybrid PR34B97 was the lowest at the later sowing date, the prime reason of this was damage caused by Diabrotica virgifera. The seed moisture content at harvest varied between 16-24% for the first sowing date. In the case of the second sowing date, higher values were measured. Hybrids Sze 269 and NK Cisko had favorable water release characteristics. The maximum value of leaf area index was the best in the case of the first sowing date (5-5.5 m2/m2).
    In 2006, yields for the first sowing date ranged between 8-10 t/ha. At the second sowing date, more favorable results were obtained. The reason for this is probably that hail caused a higher damage in hybrids with the early sowing date. Plant stock with later sowing date could recover more successfully. Hybrid PR37D25 had very high yields for the second and third sowing dates. The high-yielding hybrid PR34B97 also had high yield, but this was accompanied by higher seed moisture content. Due to the warm, sunny autumn weather, the hybrids had good water-release dynamics and were harvested with a lower seed moisture content than in the previous year. For the first sowing date, the seed moisture content was around 13-14% except for hybrid PR34B97. For the second and third sowing dates, higher values were observed. Leaf area index was significantly reduced in August for all three hybrids due to the hail in July. For the first two sowing dates, the leaves of hybrid Sze 269 were the first to dry similarly to the previous year.
    Year had a strong effect on the results in both years.

  • Investigation of the impacts of the by-product of sewage treatment on some characteristics of maize in the early growth stage

    The use of sewage sludge on arable land has been widespread for many years. This by-product, treated as waste, can provide valuable nutrients to the soil, but the applied amount of sewage sludge to arable land is limited. The possibility of application of sewage sludge is essentially determined by the composition of the sludge. The goal of the experiment was to demonstrate that the physiological, morphological, and biochemical parameters of maize (Zea mays L. cv. Armagnac) linearly change with increasing concentrations of sewage sludge (25%, 50%, and 75% as m/m%). The experiment was set up in a glasshouse. The following parameters were investigated: plant height, relative chlorophyll content, photosynthetic pigments (chlorophyll-a, chlorophyll-b, carotenoids), and leaf proline and malondialdehyde (MDA) content, and PS II quantum efficiency in the 3-leaf stages of the plants. Sewage sludge applied in lower doses had a beneficial effect on the initial growth of maize. The relative chlorophyll content was significantly higher in all treatments compared to the control. There was no significant difference in the maximum quantum efficiency of PS II reaction centers among the treatments. In this experiment, different concentrations of sewage sludge treatments had different impacts on the MDA and proline content of maize leaves. The proline content was significantly higher in all treatments, while the MDA content did not change significantly compared to the control.

  • The effect of different bacterial fertilizers on the AL-soluble P2O5 content of soil, and the biomass of the rye-grass (Lolium perenne, L)

    In pot experiment the effect of different bacterial fertilizers on some soil properties, and the amount of plant biomass were studied. The
    experiment was set up in 2010 at the Department of Soil Science and Agricultural Chemistry, in a three replications in a random block design. The ryegrass (Lolium perenne, L.) was used as a test plant. The studied soil type was calcareous chernosem soil from Látókép. In our laboratory AL-soluble P2O5 content of soil, the phosphatase enzyme activityof soil, the dry weight of rye-grass, and the phosphorus content of rye-grass were determined.
    The results of the study were the following:
    – The bacterial fertilizers - by basic treatments NPK - had significant positive effect on the AL- soluble phosphorus content of the soil.
    – The soil phosphatase enzyme activity was increased in all cases strongly by the microbial preparations used, the greatest impact was the Bactofil A bacterial fertilizer.
    – The plant educed P values significantly increased by the effect of microbial products, in addition to the fund NPK. In this case, the EM-1 and Microbion UNC bacterial fertilizer were the effective.
    – In case of the rye-grass biomass none of the bacterial preparations used caused any significant changes, either alone or when used them with straw treatment.