Articles

Sewage sludge compost as an alternative source of phosphorus to rye in acidic sandy soil

Published:
2024-06-03
Authors
View
Keywords
License

Copyright (c) 2024 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Almási, C., Orosz, V., Tóth, T., Henzsel, I., Demeter, I., Mansour, M. M., & Makádi, M. (2024). Sewage sludge compost as an alternative source of phosphorus to rye in acidic sandy soil. Acta Agraria Debreceniensis, 1, 11-18. https://doi.org/10.34101/actaagrar/1/14163
Abstract

Today, the use of chemical fertilisers is significantly determined by their production and purchase costs, which are high. In contrast, phosphorus (P) is present in sewage sludge in a form that is easy for plants to absorb. Good quality sewage sludge compost (SSC) could contain a high quantity of P, together with other macro- and microelements and organic matter. The effect of regular SSC application on soil characteristics as well as plant parameters has been studied since 2003 in Nyíregyháza in a small plot experiment. Focusing on the P in the soil-plant system, our hypothesis was that SSC covers plants’ P demand through enhancing soil P content and its plant availability in the acidic sandy soil. The effect of the SSC was examined at the doses of 0, 9, 18, and 27 t ha-1 on rye as a test crop. Some soil chemical parameters (pH, soil organic matter - SOM, ammonium lactate (AL) extractable P2O5), and the relationship between plant development (green weight, shoot length), physiological parameters (SPAD index), plant shoot P content, and soil available P content were studied. The obtained data indicated that the SOM content, pH, and available P content of the treated plots increased as a result of the long-term applied SSC compared to the control. Measurement of the relative chlorophyll content showed a strong correlation with the available P content of the soil, but surprisingly less correlation with shoot P content was found. The results of plant biomass and soil P content proved that SSC could be used as a low-cost and good source of P for plants.

References
  1. Abd Elsalam, H.E.; El-Sharnouby, M.E.; Mohamed, A.E.; Raafat, B.M.; El-Gamal, E.H. (2021): Effect of sewage sludge compost usage on corn and faba bean growth, carbon and nitrogen forms in plants and soil. Agron., 11(4): 628. https://doi.org/10.3390/agronomy11040628
  2. Antolín, M.C.; Muro, I.; Sánchez-Díaz, M. (2010): Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions. Environ. Exp. Bot., 68(1): 75–82. https://doi.org/10.1016/j.envexpbot.2009.11.001
  3. Aranyos, J.T.; Tomócsik, A.; Makádi, M.; Mészáros, J.; Blaskó, L. (2016): Changes in physical properties of sandy soil after long-term compost treatment. Int. Agrophys., 30(3): 269–274. https://doi.org/10.1515/intag-2016-0003
  4. Bai, Y.; Weng, L.; Hiemstra, T. (2024): Interaction of fulvic acid with soil organo-mineral nano-aggregates and corresponding phosphate release. Geoderma, 441: 116737. https://doi.org/10.1016/j.geoderma.2023.116737
  5. Barros-Rodríguez, A.; Rangseekaew, P.; Lasudee, K.; Pathom-aree, W.; Manzanera, M. (2021): Impacts of agriculture on the environment and soil microbial biodiversity. Plants 10(11). https://doi.org/10.3390/plants10112325
  6. Bennett, J.A.; Klironomos, J. (2019): Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol., 222(1): 91–96. https://doi.org/10.1111/nph.15603
  7. Bigalke, M.; Ulrich, A.; Rehmus, A.; Keller, A. (2017): Accumulation of cadmium and uranium in arable soils in Switzerland. Environ. Pollut., 221: 85–93. https://doi.org/10.1016/j.envpol.2016.11.035
  8. Blackwell, M.; Darch, T.; Haslam, R. (2019): Phosphorus use efficiency and fertilisers: future opportunities for improvements. Front. Agr. Sci. Eng., 6(4): 332–340. https://doi.org/10.15302/j-fase-2019274
  9. Bünemann, E.K. (2015): Assessment of gross and net mineralization rates of soil organic phosphorus – A review. Soil Biol. Biochem., 89: 82–98. https://doi.org/10.1016/j.soilbio.2015.06.026
  10. Buzás, I. (1988): Manual of Soil and Agrochemical Analysis. 2 Physico-chemical and chemical analytical methods for soils. Mezőgazdasági Kiadó, Budapest, Hungary. (in Hungarian)
  11. Carstensen, A.; Herdean, A.; Schmidt, S.B.; Sharma, A.; Spetea, C.; Pribil, M.; Husted, S. (2018): The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol., 177(1): 271–284. https://doi.org/10.1104/pp.17.01624
  12. da Silva, W.R.; do Nascimento, C.W.A.; da Silva, F.B.V.; de Souza, A.A.B.; Fracetto, G.G.M.; de Sá Veloso Ximenes, D.H. (2021): Effects of sewage sludge stabilization processes on soil fertility, mineral composition, and grain yield of maize in successive cropping. J. Soil Sci. Plant Nutr., 21(2): 1076–1088. https://doi.org/10.1007/s42729-021-00423-1
  13. European Commission (2017): Directorate-general for Internal Market, Industry, Entrepreneurship and SMEs, Study on the review of the list of critical raw materials – Final report, Publications Office. https://data.europa.eu/doi/10.2873/876644
  14. Farsang, A.; Babcsányi, I.; Ladányi, Z.; Perei, K.; Bodor, A.; Csányi, K. T.; Barta, K. (2020): Evaluating the effects of sewage sludge compost applications on the microbial activity, the nutrient and heavy metal content of a Chernozem soil in a field survey. Arab. J. Geosci., 13(19): 982. https://doi.org/10.1007/s12517-020-06005-2
  15. Fierer, N.; Jackson, R.B. (2006): The diversity and biogeography of soil bacterial communities. Proc. Nat. Acad. Sci., 103(3): 626–631. https://doi.org/10.1073/pnas.0507535103
  16. Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. (2016): Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol., 7: 1446. https://doi.org/10.3389/fmicb.2016.01446
  17. Frene, J.P.; Pandey, B.K.; Castrillo, G. (2024): Under pressure: elucidating soil compaction and its effect on soil functions. Plant Soil. https://doi.org/10.1007/s11104-024-06573-2
  18. Grigatti, M.; Boanini, E.; Cavani, L.; Ciavatta, C.; Marzadori, C. (2015): Phosphorus in digestate-based compost: chemical speciation and plant-availability. Waste Biomass Valor., 6(4): 481–493. https://doi.org/10.1007/s12649-015-9383-2
  19. Grzebisz, W.; Niewiadomska, A.; Potarzycki, J.; Andrzejewska, A. (2024): Phosphorus hotspots in crop plants production on the farm—mitigating critical factors. Agron., 14(1): 200. https://doi.org/10.3390/agronomy14010200
  20. Hungarian Standard MSZ 20135 (1999): Determination of available nutrient content of soils. Item 4.2.1: Preparing the ammonium lactate extractant. Item 5.4.2: Determination of orto-phosphate concentration. (in Hungarian)
  21. Hungarian Standard MSZ-08-1783-4 (1983): Use of high-performance instrument sets in plant tests. Quantitative determination of the phosphorus content of plant materials. (in Hungarian)
  22. Husson, O. (2013): Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362(1): 389–417. https://doi.org/10.1007/s11104-012-1429-7
  23. Jacob, J.; Lawlor, D.W. (1991): Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. J. Exp. Bot., 42(8): 1003–1011. https://doi.org/10.1093/jxb/42.8.1003
  24. Jezek, M.; Allan, A.C.; Jones, J.J.; Geilfus, C.-M. (2023): Why do plants blush when they are hungry? New Phytol., 239(2): 494–505. https://doi.org/10.1111/nph.18833
  25. Liu, C.; Liu, Y.; Lu, Y.; Liao, Y.; Nie, J.; Yuan, X.; Chen, F. (2019): Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ, 6: e6240. https://doi.org/10.7717/peerj.6240
  26. ludewig, U.; Yuan, L.; Neumann, G. (2019): Improving the efficiency and effectiveness of global phosphorus use: focus on root and rhizosphere levels in the agronomic system. Front. Agr. Sci. Eng., 6(4): 357‒365. https://doi.org/10.15302/J-FASE-2019275
  27. Makádi, M.; Tomócsik, A.; Márton, Á. (2006): Szerves és szervetlen anyagok mezőgazdasági hasznosíthatóságának vizsgálata a DE ATC Kutató Központban. MTA SZ-SZ-B. megyei Közgyűlés és XV. Tudományos Ülés, Nyíregyháza. Szeptember 22. CD-ROM.
  28. Manca, A.; da Silva, M.R.; Guerrini, I.A.; Fernandes, D.M.; Villas Bôas, R.L.; da Silva, L.C.; da Fonseca, A.C.; Ruggiu, M.C.; Cruz, C.V.; Lozano Sivisaca, D.C.; de Moura D’Andréa Mateus, C.; Murgia, I.; Grilli, E.; Ganga, A.; Capra, G.F. (2020): Composted sewage sludge with sugarcane bagasse as a commercial substrate for Eucalyptus urograndis seedling production. J. Clean. Prod., 269: 122145. https://doi.org/10.1016/j.jclepro.2020.122145
  29. Mavromatis, T.; Boote, K.J.; Jones, J.W.; Wilkerson, G.G.; Hoogenboom, G. (2002): Repeatability of model genetic coefficients derived from soybean performance trials across different states. Crop Sci., 42(1): 76–89. https://doi.org/10.2135/cropsci2002.7600
  30. Meng, X.; Chen, W.-W.; Wang, Y.-Y.; Huang, Z.-R.; Ye, X.; Chen, L.-S.; Yang, L.-T. (2021): Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS ONE, 16(2): e0246944. https://doi.org/10.1371/journal.pone.0246944
  31. Murphy, P.N.C.; Sims, J.T. (2012): Effects of lime and phosphorus application on phosphorus runoff risk. Water Air Soil Pollut., 223(8): 5459–5471. https://doi.org/10.1007/s11270-012-1293-3
  32. Ogunniyi, J.E.; Olowookere, B.T.; Burns, I.G.; Lillywhite, R.; Rickson, J.R. (2021): Effect of clay and organic matter amendments on water and nutrient retention of sandy soils: column leaching experiment. Int. J. Agric. Earth Sci., 7(2): 1–16.
  33. Penn, C.J.; Camberato, J.J. (2019): A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agric., 9(6): 120. https://doi.org/10.3390/agriculture9060120
  34. Raghothama, K.G. (2005): Phosphorus and plant nutrition: an overview. In: Phosphorus: Agriculture and the Environment, 353–378. https://doi.org/10.2134/agronmonogr46.c11
  35. Richardson, A.E.; Barea, J.-M.; McNeill, A.M.; Prigent-Combaret, C. (2009): Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil, 321(1): 305–339. https://doi.org/10.1007/s11104-009-9895-2
  36. Roghanian, S.; Mirseyed, H.; Savaghebi, G.; Halajian, L.; Jamei, M.; Etesami, H. (2012): Effects of composted municipal waste and its leachate on some soil chemical properties and corn plant responses. Int. J. Agric. Res. Rev., 2(6): 801–814.
  37. Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. (2020): Recycling of organic wastes through composting: process performance and compost application in agriculture. Agron., 10(11) 1838. https://doi.org/10.3390/agronomy10111838
  38. Seaton, G.G.R.; Walker, D.A. (1990). Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation. Proc. R. Soc. Lond. B., 242: 29; 35. https://doi.org/10.1098/rspb.1990.0099
  39. Singh, S.K.; Wu, X.; Shao, C.; Zhang, H. (2022): Microbial enhancement of plant nutrient acquisition. Stress Biol., 2(1): 3. https://doi.org/10.1007/s44154-021-00027-w
  40. Talboys, P.J.; Heppell, J.; Roose, T.; Healey, J.R.; Jones, D.L.; Withers, P.J.A. (2016): Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant Soil, 401(1): 109–123. https://doi.org/10.1007/s11104-015-2747-3
  41. Uzinger, N.; Takács, T.; Szili-Kovács, T.; Radimszky, L.; Füzy, A.; Draskovits, E.; Szűcs-Vásárhelyi, N.; Molnár, M.; Farkas, É.; Kutasi, J.; Rékási, M. (2020): Fertility impact of separate and combined treatments with biochar, sewage sludge compost and bacterial inocula on acidic sandy soil. Agron., 10(10): 1612. https://doi.org/10.3390/agronomy10101612
  42. Wang, Y.; Lambers, H. (2020): Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant Soil, 447(1): 135–156. https://doi.org/10.1007/s11104-019-03972-8
  43. Wierzbowska, J.; Sienkiewicz, S.; Zalewska, M.; Żarczyński, P.; Krzebietke, S. (2020): Phosphorus fractions in soil fertilised with organic waste. Environ. Monit. Assess., 192(5): 315. https://doi.org/10.1007/s10661-020-8190-9
  44. Wong, M.T.F.; Swift, R.S. (2001): Application of Fresh and Humified Organic Matter to Ameliorate Soil Acidity. In: Swift, R.S.; Spark, K.M., eds. Understanding and Managing Organic Matter in Soils, Sediments, and Waters: Proc. of the 9th Int. Conf. of the Int. Humic Substances Soc., University of Adelaide, Adelaide, Australia, 21st-25th September, 1998. Int. Humic Substances Soc., St. Paul, Minnesota, USA.
  45. Woźniak, M.M.; Siebielec, S.; Siebielec, G.; Bojarszczuk, J.; Gałązka, A.; Urbaniak, M. (2024): Microbially modified effect of exogenous organic matter on soil chemical and biological indices and plant responses. J. Soil. Sediment., 24(1): 70–85. https://doi.org/10.1007/s11368-023-03632-6
  46. WRB, I. U. S. S. (IUSS) W. G. (2015). World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106.
  47. Zdruli, P.; Jones, R.J.A.; Montanarella, L. (2004): Organic Matter in the Soils of Southern Europe. European Soil Bureau Technical Report, EUR 21083 EN, 16pp. Office for Official Publications of the European Communities, Luxembourg.