Sewage sludge compost as an alternative source of phosphorus to rye in acidic sandy soil
Authors
View
Keywords
License
Copyright (c) 2024 by the Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
How To Cite
Abstract
Today, the use of chemical fertilisers is significantly determined by their production and purchase costs, which are high. In contrast, phosphorus (P) is present in sewage sludge in a form that is easy for plants to absorb. Good quality sewage sludge compost (SSC) could contain a high quantity of P, together with other macro- and microelements and organic matter. The effect of regular SSC application on soil characteristics as well as plant parameters has been studied since 2003 in Nyíregyháza in a small plot experiment. Focusing on the P in the soil-plant system, our hypothesis was that SSC covers plants’ P demand through enhancing soil P content and its plant availability in the acidic sandy soil. The effect of the SSC was examined at the doses of 0, 9, 18, and 27 t ha-1 on rye as a test crop. Some soil chemical parameters (pH, soil organic matter - SOM, ammonium lactate (AL) extractable P2O5), and the relationship between plant development (green weight, shoot length), physiological parameters (SPAD index), plant shoot P content, and soil available P content were studied. The obtained data indicated that the SOM content, pH, and available P content of the treated plots increased as a result of the long-term applied SSC compared to the control. Measurement of the relative chlorophyll content showed a strong correlation with the available P content of the soil, but surprisingly less correlation with shoot P content was found. The results of plant biomass and soil P content proved that SSC could be used as a low-cost and good source of P for plants.
References
- Abd Elsalam, H.E.; El-Sharnouby, M.E.; Mohamed, A.E.; Raafat, B.M.; El-Gamal, E.H. (2021): Effect of sewage sludge compost usage on corn and faba bean growth, carbon and nitrogen forms in plants and soil. Agron., 11(4): 628. https://doi.org/10.3390/agronomy11040628
- Antolín, M.C.; Muro, I.; Sánchez-Díaz, M. (2010): Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions. Environ. Exp. Bot., 68(1): 75–82. https://doi.org/10.1016/j.envexpbot.2009.11.001
- Aranyos, J.T.; Tomócsik, A.; Makádi, M.; Mészáros, J.; Blaskó, L. (2016): Changes in physical properties of sandy soil after long-term compost treatment. Int. Agrophys., 30(3): 269–274. https://doi.org/10.1515/intag-2016-0003
- Bai, Y.; Weng, L.; Hiemstra, T. (2024): Interaction of fulvic acid with soil organo-mineral nano-aggregates and corresponding phosphate release. Geoderma, 441: 116737. https://doi.org/10.1016/j.geoderma.2023.116737
- Barros-Rodríguez, A.; Rangseekaew, P.; Lasudee, K.; Pathom-aree, W.; Manzanera, M. (2021): Impacts of agriculture on the environment and soil microbial biodiversity. Plants 10(11). https://doi.org/10.3390/plants10112325
- Bennett, J.A.; Klironomos, J. (2019): Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol., 222(1): 91–96. https://doi.org/10.1111/nph.15603
- Bigalke, M.; Ulrich, A.; Rehmus, A.; Keller, A. (2017): Accumulation of cadmium and uranium in arable soils in Switzerland. Environ. Pollut., 221: 85–93. https://doi.org/10.1016/j.envpol.2016.11.035
- Blackwell, M.; Darch, T.; Haslam, R. (2019): Phosphorus use efficiency and fertilisers: future opportunities for improvements. Front. Agr. Sci. Eng., 6(4): 332–340. https://doi.org/10.15302/j-fase-2019274
- Bünemann, E.K. (2015): Assessment of gross and net mineralization rates of soil organic phosphorus – A review. Soil Biol. Biochem., 89: 82–98. https://doi.org/10.1016/j.soilbio.2015.06.026
- Buzás, I. (1988): Manual of Soil and Agrochemical Analysis. 2 Physico-chemical and chemical analytical methods for soils. Mezőgazdasági Kiadó, Budapest, Hungary. (in Hungarian)
- Carstensen, A.; Herdean, A.; Schmidt, S.B.; Sharma, A.; Spetea, C.; Pribil, M.; Husted, S. (2018): The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol., 177(1): 271–284. https://doi.org/10.1104/pp.17.01624
- da Silva, W.R.; do Nascimento, C.W.A.; da Silva, F.B.V.; de Souza, A.A.B.; Fracetto, G.G.M.; de Sá Veloso Ximenes, D.H. (2021): Effects of sewage sludge stabilization processes on soil fertility, mineral composition, and grain yield of maize in successive cropping. J. Soil Sci. Plant Nutr., 21(2): 1076–1088. https://doi.org/10.1007/s42729-021-00423-1
- European Commission (2017): Directorate-general for Internal Market, Industry, Entrepreneurship and SMEs, Study on the review of the list of critical raw materials – Final report, Publications Office. https://data.europa.eu/doi/10.2873/876644
- Farsang, A.; Babcsányi, I.; Ladányi, Z.; Perei, K.; Bodor, A.; Csányi, K. T.; Barta, K. (2020): Evaluating the effects of sewage sludge compost applications on the microbial activity, the nutrient and heavy metal content of a Chernozem soil in a field survey. Arab. J. Geosci., 13(19): 982. https://doi.org/10.1007/s12517-020-06005-2
- Fierer, N.; Jackson, R.B. (2006): The diversity and biogeography of soil bacterial communities. Proc. Nat. Acad. Sci., 103(3): 626–631. https://doi.org/10.1073/pnas.0507535103
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. (2016): Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol., 7: 1446. https://doi.org/10.3389/fmicb.2016.01446
- Frene, J.P.; Pandey, B.K.; Castrillo, G. (2024): Under pressure: elucidating soil compaction and its effect on soil functions. Plant Soil. https://doi.org/10.1007/s11104-024-06573-2
- Grigatti, M.; Boanini, E.; Cavani, L.; Ciavatta, C.; Marzadori, C. (2015): Phosphorus in digestate-based compost: chemical speciation and plant-availability. Waste Biomass Valor., 6(4): 481–493. https://doi.org/10.1007/s12649-015-9383-2
- Grzebisz, W.; Niewiadomska, A.; Potarzycki, J.; Andrzejewska, A. (2024): Phosphorus hotspots in crop plants production on the farm—mitigating critical factors. Agron., 14(1): 200. https://doi.org/10.3390/agronomy14010200
- Hungarian Standard MSZ 20135 (1999): Determination of available nutrient content of soils. Item 4.2.1: Preparing the ammonium lactate extractant. Item 5.4.2: Determination of orto-phosphate concentration. (in Hungarian)
- Hungarian Standard MSZ-08-1783-4 (1983): Use of high-performance instrument sets in plant tests. Quantitative determination of the phosphorus content of plant materials. (in Hungarian)
- Husson, O. (2013): Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362(1): 389–417. https://doi.org/10.1007/s11104-012-1429-7
- Jacob, J.; Lawlor, D.W. (1991): Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. J. Exp. Bot., 42(8): 1003–1011. https://doi.org/10.1093/jxb/42.8.1003
- Jezek, M.; Allan, A.C.; Jones, J.J.; Geilfus, C.-M. (2023): Why do plants blush when they are hungry? New Phytol., 239(2): 494–505. https://doi.org/10.1111/nph.18833
- Liu, C.; Liu, Y.; Lu, Y.; Liao, Y.; Nie, J.; Yuan, X.; Chen, F. (2019): Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ, 6: e6240. https://doi.org/10.7717/peerj.6240
- ludewig, U.; Yuan, L.; Neumann, G. (2019): Improving the efficiency and effectiveness of global phosphorus use: focus on root and rhizosphere levels in the agronomic system. Front. Agr. Sci. Eng., 6(4): 357‒365. https://doi.org/10.15302/J-FASE-2019275
- Makádi, M.; Tomócsik, A.; Márton, Á. (2006): Szerves és szervetlen anyagok mezőgazdasági hasznosíthatóságának vizsgálata a DE ATC Kutató Központban. MTA SZ-SZ-B. megyei Közgyűlés és XV. Tudományos Ülés, Nyíregyháza. Szeptember 22. CD-ROM.
- Manca, A.; da Silva, M.R.; Guerrini, I.A.; Fernandes, D.M.; Villas Bôas, R.L.; da Silva, L.C.; da Fonseca, A.C.; Ruggiu, M.C.; Cruz, C.V.; Lozano Sivisaca, D.C.; de Moura D’Andréa Mateus, C.; Murgia, I.; Grilli, E.; Ganga, A.; Capra, G.F. (2020): Composted sewage sludge with sugarcane bagasse as a commercial substrate for Eucalyptus urograndis seedling production. J. Clean. Prod., 269: 122145. https://doi.org/10.1016/j.jclepro.2020.122145
- Mavromatis, T.; Boote, K.J.; Jones, J.W.; Wilkerson, G.G.; Hoogenboom, G. (2002): Repeatability of model genetic coefficients derived from soybean performance trials across different states. Crop Sci., 42(1): 76–89. https://doi.org/10.2135/cropsci2002.7600
- Meng, X.; Chen, W.-W.; Wang, Y.-Y.; Huang, Z.-R.; Ye, X.; Chen, L.-S.; Yang, L.-T. (2021): Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS ONE, 16(2): e0246944. https://doi.org/10.1371/journal.pone.0246944
- Murphy, P.N.C.; Sims, J.T. (2012): Effects of lime and phosphorus application on phosphorus runoff risk. Water Air Soil Pollut., 223(8): 5459–5471. https://doi.org/10.1007/s11270-012-1293-3
- Ogunniyi, J.E.; Olowookere, B.T.; Burns, I.G.; Lillywhite, R.; Rickson, J.R. (2021): Effect of clay and organic matter amendments on water and nutrient retention of sandy soils: column leaching experiment. Int. J. Agric. Earth Sci., 7(2): 1–16.
- Penn, C.J.; Camberato, J.J. (2019): A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agric., 9(6): 120. https://doi.org/10.3390/agriculture9060120
- Raghothama, K.G. (2005): Phosphorus and plant nutrition: an overview. In: Phosphorus: Agriculture and the Environment, 353–378. https://doi.org/10.2134/agronmonogr46.c11
- Richardson, A.E.; Barea, J.-M.; McNeill, A.M.; Prigent-Combaret, C. (2009): Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil, 321(1): 305–339. https://doi.org/10.1007/s11104-009-9895-2
- Roghanian, S.; Mirseyed, H.; Savaghebi, G.; Halajian, L.; Jamei, M.; Etesami, H. (2012): Effects of composted municipal waste and its leachate on some soil chemical properties and corn plant responses. Int. J. Agric. Res. Rev., 2(6): 801–814.
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. (2020): Recycling of organic wastes through composting: process performance and compost application in agriculture. Agron., 10(11) 1838. https://doi.org/10.3390/agronomy10111838
- Seaton, G.G.R.; Walker, D.A. (1990). Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation. Proc. R. Soc. Lond. B., 242: 29; 35. https://doi.org/10.1098/rspb.1990.0099
- Singh, S.K.; Wu, X.; Shao, C.; Zhang, H. (2022): Microbial enhancement of plant nutrient acquisition. Stress Biol., 2(1): 3. https://doi.org/10.1007/s44154-021-00027-w
- Talboys, P.J.; Heppell, J.; Roose, T.; Healey, J.R.; Jones, D.L.; Withers, P.J.A. (2016): Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant Soil, 401(1): 109–123. https://doi.org/10.1007/s11104-015-2747-3
- Uzinger, N.; Takács, T.; Szili-Kovács, T.; Radimszky, L.; Füzy, A.; Draskovits, E.; Szűcs-Vásárhelyi, N.; Molnár, M.; Farkas, É.; Kutasi, J.; Rékási, M. (2020): Fertility impact of separate and combined treatments with biochar, sewage sludge compost and bacterial inocula on acidic sandy soil. Agron., 10(10): 1612. https://doi.org/10.3390/agronomy10101612
- Wang, Y.; Lambers, H. (2020): Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant Soil, 447(1): 135–156. https://doi.org/10.1007/s11104-019-03972-8
- Wierzbowska, J.; Sienkiewicz, S.; Zalewska, M.; Żarczyński, P.; Krzebietke, S. (2020): Phosphorus fractions in soil fertilised with organic waste. Environ. Monit. Assess., 192(5): 315. https://doi.org/10.1007/s10661-020-8190-9
- Wong, M.T.F.; Swift, R.S. (2001): Application of Fresh and Humified Organic Matter to Ameliorate Soil Acidity. In: Swift, R.S.; Spark, K.M., eds. Understanding and Managing Organic Matter in Soils, Sediments, and Waters: Proc. of the 9th Int. Conf. of the Int. Humic Substances Soc., University of Adelaide, Adelaide, Australia, 21st-25th September, 1998. Int. Humic Substances Soc., St. Paul, Minnesota, USA.
- Woźniak, M.M.; Siebielec, S.; Siebielec, G.; Bojarszczuk, J.; Gałązka, A.; Urbaniak, M. (2024): Microbially modified effect of exogenous organic matter on soil chemical and biological indices and plant responses. J. Soil. Sediment., 24(1): 70–85. https://doi.org/10.1007/s11368-023-03632-6
- WRB, I. U. S. S. (IUSS) W. G. (2015). World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106.
- Zdruli, P.; Jones, R.J.A.; Montanarella, L. (2004): Organic Matter in the Soils of Southern Europe. European Soil Bureau Technical Report, EUR 21083 EN, 16pp. Office for Official Publications of the European Communities, Luxembourg.