Show Advanced search options Hide Advanced search options
Studies of the influences of different N fertilizers and Microbion UNC bacterial fertilizer on the nutrient content of soil
Published October 5, 2010

A field experiment was conducted to examine the effects of different nitrogen fertilizers in combination with bacterial fertilizer on
nutrient uptake of horseradish and plant available nutrients of the soil. Three different N fertilizers, ammonium-nitrate, urea and calciumnitrate
(116 kg ha-1 N) in combination with Microbion UNC bacterial... fertilizer (2 kg ha-1) were applied as treatments in a randomized
complete block design in three replications. In this paper we presented the results of soil measurements. The soil of the experimental area
was chernozem with medium sufficiency level of N and P and poor level of K.
Our main results:
The amount of 0.01M CaCl2 soluble inorganic nitrogen fractions, NO3
--N and NH4
+-N and also the quantity of soluble organic-N were
almost the same in the soil. N fertilizers significantly increased all the soluble N fractions. The amount of NO3
--N increased to the greatest
extent and the increase of organic N was the slightest. We measured the largest CaCl2 soluble NO3
- -N and total-N contents in the plots
treated with ammonium-nitrate, the largest NH4
+-N in the plots treated with calcium-nitrate and the largest organic-N fraction in plots
treated with urea.
Bacterial inoculation also increased both soluble inorganic nitrogen forms and also total-N content of soil compared to the control. In
the case of combined (artificial and bacterial fertilizer) treatments we measured lower NO3
--N, organic-N and total-N compared to the
values of plots having only nitrogen fertilizer treatments. On the contrary in the plots with combined treatments the CaCl2 soluble NH4
content of soil in more cases were higher than that of values with artificial fertilizer treatment.
As a function of calcium-nitrate application increased AL-P2O5 and AL-K2O values were measured compared to control. Microbion
UNC supplement of calcium nitrate yielded also increase in AL-P2O5 and AL-K2O values, till then supplement of ammonium-nitrate fertilizer
yielded a decrease in these values compared to the control.
All nitrogen fertilizers resulted in a significant decrease in AL-Mg content of soil compared to the control. Nevertheless bacterial
fertilizer increased AL-Mg values in any cases.

Show full abstract
Studies of the effects of N fertilizers and Microbion UNC biofertilizer on microelement content of horseradish (Armoracia macrocarpa)
Published November 3, 2010

A field experiment on calcareous chernozem soil was performed to study the effects of different N and bacterial fertilizers on the nutrient content of horseradish (Armoracia macrocarpa). In the experiment the trials were arranged in a randomized block design with three replications, applying three levels of NH4NO3 and diff...erent N fertilizers, namely ammonium-nitrate, urea and calcium-nitrate, with or without application of Microbion UNC biofertilizer.
In the present paper the changes and distribution of manganese, zinc and copper contents of the horseradish plant are summarized by the
effect of different treatments.
The Mn content of leaves were higher in all cases than those of roots, but Zn mainly accumulated in the roots. The distribution of copper within the horseradish plant was more equalized than that of Zn and Mn. Different N fertilizers and increasing doses of ammonium-nitrate had effects mainly on the microelement contents of leaves. The highest Mn contents of plant were measured in treatments of Ca(NO3)2 and Ca(NO3)2+Microbion. The lowest ammonium nitrate dose (N1) decreased the Mn content of leaves compared to control, but further doses
(N2, N3) did not alter these values any longer. Microbion UNC biofertilizer did not have any effect on the Mn content of roots, but we measured higher Mn in leaves in some combined treatments. Ca(NO3)2 increased the zinc content in leaves and roots in a noticable manner. With the increasing of NH4NO3 doses, the Zn content of leaves and roots augmented significantly. Neither N fertilizers (or the increasing doses of NH4NO3) nor the biofertilizer application influenced the Cu content of horseradish plant. 
N fertilizers had higher effects on the microelement content of horseradish, the biofertilizer’s effect was smaller and was not the same in every treatment.

Show full abstract
Impact of ammonium nitrate and Microbion UNC bacterial fertilizer on dry matter accumulation of ryegrass (Lolium perenne L.)
Published November 3, 2010

Pot experiment was performed to investigate the effects of increasing NH4NO3 doses with or without Microbion UNC bacterial fertilizer
application on dry matter production of ryegrass (Lolium perenne L.). Experiment was set up on calcareous chernozem soil of Debrecen-Látókép and on humus sandy soil of Őrbottyán. The bi-factorial trials w...ere arranged in a randomized complete block design with four replications. Grass was cut three times. Dry matter production was determined and the sum of biomass of cuts was calculated as cumulated dry weights. Analysis of variance was carried out on the data in order to provide a statistical comparison between the treatment means. The least significant difference (LSD5%) test was used to detect differences between means. On the basis of our results it can be concluded, that the dry weights of ryegrass cultivated on chernozem soil were higher than on sandy soil. With increasing nitrogen supply the dry matter production of grass significantly increased in both types of soils. In case of sandy soil the increasing effect was more expressed, but dry weights of this soil never reached the appropriate values of chernozem soil. Application of Microbion UNC had positive effect on dry matter production of ryegrass grown on both two types of soils but the effect was more expressed on chernozem soil. Finally it can be concluded that the increasing effect of NH4NO3 on biomass weights was more expressed in both types of soils, the biofertilizer application also increased the dry weights of plant in a small degree. 

Show full abstract
1 - 3 of 3 items