Search

Published After
Published Before

Search Results

  • The Role and Significance of Soil Analyses in Plant Nutrition and Environmental Protection
    3-8
    Views:
    80

    Hungary has a rich history of soil analyses and soil mapping. Our main tasks today are the preservation of soil fertility as well as balancing the goals of production and environmental protection. The main requirement of agricultural production is to adapt to ecological and economic conditions.
    In a series of consultative meetings in the past seven years, representatives from Central and Eastern Europe have analyzed nutrient management practices in their respective countries. According to a joint memorandum agreed upon in 2000, in the countries awaiting accession, the quantity of nutrients used per hectare is considerably smaller than the Western-European usage targeted through special subsidies. The current low nutrient usage contradicts the principles of sustainability and that of the efficient use of resources, jeopardizing soil fertility.
    In Hungary, the use of inorganic fertilizers underwent a dynamic development, which manifested itself in an almost tenfold usage growth between 1960 and 1985. This growth slowed down somewhat between 1985 and 1990 and then reduced dramatically after 1990, reaching record lows at the usage levels of the 60s. The nutrient supply has had a negative balance for the last 15 years.
    The increasing and then decreasing usage trends can equally be detected in the domestic yield averages of wheat and corn as well as in the nutrient supply of soils. Yields were the largest when usage levels were the highest, and decreased thereafter. Draughts have also contributed to smaller yields. The dramatic decrease in the use of inorganic fertilizers when adequate organic fertilizers are lacking endangers our soils’ fertility.
    About 50% of soils in Hungary are acidic. Acidity is mostly determined by soil formation, but especially on soils with a low buffering capacity, this acidity may intensify due to inorganic fertilizers. Sustainable agriculture requires the chemical improvement of acidic soils. According to their y1 values, the majority of our acidic soils need to be improved. This chemical soil remediation is required in 15% of the acidic soils, while it’s recommended for another 20% of these soils.
    Results of the analyses conducted in the framework of the soil-monitoring system set up in Hungary in 1992 show that in 95% of the analyzed samples, the toxic element content is below the allowable limit. Cultivated areas are not contaminated; toxicity above the legal level was found only in specific high-risk sampling areas: in the vicinity of industry, due to local overload. The basic principle of sustainable agriculture is to preserve soil fertility without undue strain on the environment. The intensity of the production needs to be considered according to the conditions of the site; i.e.; nutrient management needs to be site-specific. It is recommended to differentiate three types of cultivated land in terms of environmental sensitivity: areas with favorable conditions, endangered areas, and protected areas, and then to adopt nutrient management practices accordingly. To meet all the above-mentioned goals is impossible without systematic soil analysis. Tests conducted by the national monitoring system cannot replace regular field measurements.

  • Different soil fertility conditions depending on different land use methods
    169-172
    Views:
    82

    In precision nutrient management the most important aspect is adaptation but we should consider the possibility of the long-term improvement of soil fertility within the less fertile landscape zones.  This possibility can be evaluated principally by long-term field experiments, which are running on similar soil types. The results of these field experiments can indicate that which soil fertility status should be attained. Some more important soil fertility data, (such as pH, P-, K- and soil organic matter (SOM) content) of a long-term field  experiment with increasing farmyard manure(FYM) doses or equivalent NPK fertilizers, set up on an Eutric cambisol, are presented. The yieldincreasing capacity of FYM doses was only 82%, as compared to the equivalent amount of mineral NPK, but long-term FYM treatments resulted in 10% higher SOM content than that of equivalent NPK
    fertilizer doses. The studies indicate that SOM content is a function of local climate and clay content of the soil, and neither long-term high FYM doses can increase SOM content steadily above a supposed steady-state value. However we have to make efforts to keep the optimum level. The lowest soil reactions developed both with the highest NPK doses and without any fertilization. AL-P2O5 content of soil was increased more by mineral fertilization than by FYM treatments, but in case of AL-K2O content there was no difference between the fertilization variants. However the highest doses of both fertilization  variants increased soil nutrient content to an excessive degree. Wecould get very valuable data from the unfertilized control plots as well, where long-term yield data suppose 48 kg ha-1 year-1 air-borne N-input.

  • Examination of Reproductive Performance of Roe Deer (Capreolus capreolus) in Hungary
    33-38
    Views:
    87

    The objective of the research partly is to compare the reproduction performance of the populations living in different regions with regard to some special characteristics (age, condition).
    When estimating the age through tooth wear and cementum-layer-counting there was a difference of 0.87 years in favour of the first one (r=0,840; p<0,001). I found cementum layers at 42% of the does in the study after examining the MI teeth.
    There was lose connection between the weight (eviscerated, with head and legs) and the KFI (r=0,296; p<0,01), and for further analysis, I used only the KFI as the index for condition.
    The regional average KFI varied from 0.24-0.37 in fawns, 0.82-1.73 in does, with individual extremes of 0-4.05. Within the examined regions the highest index belonged to the prime-aged does, while the 1-year-olds had a lower rate, and it was the lowest in the does older than 8 years.
    The rate of fertility was between 83,3(ns)-100% as we can see from the presence of the CL. All the examined does were fertile, except in one region, while among the female fawns in two regions I only found three with active ovaries. The average number of CL was 1.5-2.13, and this varied by regions; all in all it was the highest in the 2-7-year-old group (1.96) and in the ones over 8 years (2.00!), while it was lower in the does younger than 1 year (1.90). The high fertility of the does over 8 years is remarkable.
    I could examine the number of embryos in two regions during the post-implantation period, and beside 100% fertility I found significant differences among the does, which can be associated with the condition. The ratio of CL carriers and the pregnant does was 100% and 73% in the two regions, the average number of CL were 1.92 and 1.72, while the average embryo number were 1.83 and 1.36 per doe. The difference between the CL and the embryo numbers on the two regions were 5% and 21%. The difference (prenatal loss) is in connection with the age (age class) of the doe. It is possible, however, that in some cases oestrus was not followed by gestation. But in roe deer, owing to the commonly known lack of luteolysis-mechanism (Flint et al., 1994), the regression of the CL of the does that did not get pregnant takes place in December and January, so the CL found in January cannot prove a previous pregnancy, which might have been followed by an abortion.
    Although it has to be proven, it seems that the number of the CL (potential progeny) can be associated with the age (r=0,418; p<0,01) and the weight (r=0,312; p<0,01) of the doe, while the embryo number (realised progeny) is influenced by the age of the doe and probably by external factors.
    It is essential to continue and extend the research to increase the reliability of the results and their correlation.

  • Analysis of small ruminants’ semen under the cooling, deep-freezing and sex-orientation method
    53-58
    Views:
    127

    The aim of this study was to examine the influence of cooling, deep-freezing and sex-orientation methods on fertility of ram and buck semen. It was pointed out that deep-freezing and sexorientation methods had a more considerable destruction on both semen compared with the effect of cooling method. However, with the development of the sex-orientation method, the results of  lambing had a significant increase in sheep. On the other hand, the NRR of the inseminations with deep-frozen ram semen exceeded most of previously publicated results. Being interesting, and hopefully useful benefit in practice that the analysed buck semen samples are shown more favourable results in all methods compared with the same results of rams.

  • Comparative examination of a mineral fertiliser and a bacterial fertilizer on humic sandy soil
    111-116
    Views:
    79

    In our pot experiment, the impact of a bacterial fertilizer, Bactofil® A10 and a mineral fertilizer Ca(NO3)2 applied in different rates was studied on some soil chemical and microbiological characteristics of a humic sandy soil (Pallag). Perennial rye-grass (Lolium perenne L.) was used as a test-plant. Samples were collected four and eight weeks after sowing in each year. The experiment was set up in 2007-2009 in the greenhouse of
    the UD CASE Department of Agrochemistry and Soil Science. The available (AL-extractable) nutrient contents of soil, among the microbial parameters the total number of bacteria, the number of microscopic fungi, cellulose-decomposing and nitrifying bacteria, the sacharase and urease enzyme activity, as well as the soil respiration rate were measured.
    Statistical analyses were made by means of the measurements deviation, LSD values at the P=0.05 level and correlation coefficients were calculated. Results of our experiment were summarised as follows:
    − The readily available nutrient content of humic sandy soil increased as affected by the treatments, in case of the available (AL-extractable) phosphorus and potassium content the higher value was measured in high-dosage artificial fertilizer treatment.
    − The treatments had also positive effect on several soil microbial parameters studied. The higher-dosage mineral fertilizer treatments had a beneficial effect on the total number of bacteria, cellulose-decomposing and nitrifying bacteria. No significant differences were obtained between the effect of treatment in case of the total-number of bacteria, the number of microscopic fungi and nitrifying bacteria.
    − On the sacharase enzyme activity the artificial fertiliser treatments proved to be unambiguously stimulating, the urease activity significantly increased on the effect of the lower-dosage Ca(NO3)2 artificial fertilizer treatment. 
    − The soil respiration increased in all treatments in related to the amounts applied, significantly increased in the highest rate of Ca(NO3)2 fertilizer addition. 
    − Some medium and tight positive correlations were observed between the soil chemical and microbiological parameters studied in case of both nutrient sources. 
    Summarizing our results, it was established that the organic and all the mineral fertilizer treatments had beneficial effects on the major soil characteristics from the aspect of nutrient supply. In majority of the examined soil parameters (AL-extractable phosphorus- and potassium, total number of bacteria, number of cellulose-decomposing and nitrifying bacteria, activity of sacharase enzyme) the high rate of Ca(NO3)2 mineral fertilizer treatment proved to be more stimulating, but at the same time the high rate bacterium fertilizer resulted in significant increases in
    the nitrate-N content, the AL-potassium content of soil, the total number of bacteria, the number of cellulose-decomposing and nitrifying bacteria and the urease enyme activity. 
    Our examinations showed that the mineral fertilizer treatments proved to be more stimulating on most of the soil parameters studied but according to our results, it was established that Bactofil is efficiently applicable in the maintenance of soil fertility and the combined application of
    mineral fertilizer and bacterium fertilizer may be a favourable opportunity – also in aspect of the environmental protection – in maintaining soil fertility.

     

  • Application of semen evaluation techniques
    5-11
    Views:
    177

    Laboratory methods of semen evaluation are used to select males for artificial insemination. The current review describes several techniques that have been recently used for sperm analysis. Conventional microscopic methods in combination with the objective computerassisted sperm motility and morphology analyzers and flow cytometry, allows to obtain more precise information about the membrane and functional status of spermatozoa. By using several methods to detect motility, viability, acrosomal and capacitation status besides DNA integrity sperm biology and some of the mechanism involved in sperm cry injury can be better understood. The number of possible targets related to sperm quality is increasing, and possible that some of them could enable sperm analysis for predicting freezability and fertility to be improved.

  • Current Conditions and Opportunities of Biofarming in Hungary
    150-156
    Views:
    83

    The aim of organic farming is not to maximize income, but to achieve optimal product quality. It is completed by the tightest possible material, and energy flow within the farm. Organic agriculture significantly reduces external inputs by avoiding the use of chemo-synthetic fertilizers, pesticides and pharmaceuticals. Instead it works with nature to increase both agricultural yields and disease resistance. Total independence of external resources can not be achieved in Hungary due to the small-scale of organic animal husbandry. Some materials in limited quantities can be purchased from external resources, though the group of these materials is strictly regulated. Organic farming harmonizes with the concept of European multifunctional agriculture, because besides farming, it includes social considerations, as it helps to maintain natural resources and the relationship between people and their environment, and provides a living for those living in the region.
    As regards organic farming the fertility of the soil and the health of vegetation can be influenced in various ways. Farmers have to be highly skilled and able to manage a farm with great expertise. Generally it can be stated that as the use of non-organically produced products is limited, the opportunities to correct failures made by the farmer are minimal, contrary to conventional farming. Farmers must be intent on developing the tightest material- and energy flow. This means that organic farms ideally have both animal husbandry and crop production. This energy and skill demanding system of farming is compensated by state subsidies, growing market share and relatively high prices for organic products.

  • Soil Fertility Management in Westsik’s Crop Rotation Experiment
    34-39
    Views:
    90

    The crop rotation experiment, established by Vilmos Westsik in 1929, is the best known and most remarkable example of continuous production in Hungary. It is still used to study the effects of organic manure treatment, develop models and predict the likely effects of different cropping systems on soil properties and crop yields. Westsik’s crop rotation experiment provides data of immediate value to farmers concerning the applications of fertilisers, green, straw and farmyard manure. The experiment also provides a resource of yield, plant and soil data sets for scientific research into the soil and plant processes which control soil fertility, and into the sustainability of production without environmental deterioration. The maintenance of Westsik’s crop rotation experiment can be used to illustrate the value of long-term field experiments.

  • Assessment of Environmental Susceptibility/Vulnerability of Soils
    62-74
    Views:
    83

    Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
    The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
    Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
    Soil resources are threatened by the following environmental stresses:
    – soil degradation processes;
    – extreme moisture regime;
    – nutrient stresses (deficiency or toxicity);
    – environmental pollution.
    Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
    The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
    The efficient control of these processes necessitates the following consecutive steps:
    • registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
    • evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
    • assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
    • elaboration of efficient technologies for the „best” control alternatives (best management practice).
    Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
    Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
    The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

  • The effect of gossypol acetate on the fertility of boars
    47-55
    Views:
    116

    This study evaluated the effect of gossypol acetate, a potential antifertility compound, on semen quality and testicular histopathology of boars. Six boars were allotted into two experimental groups. Half of the animals were fed a diet that was supplemented with 2 mg of gossypol acetate per kg body weight per day for 9 weeks, control animals received a gossypol acetate-free feed. During the experimental period, semen was collected weekly from each boar and semen parameters were recorded. The animals were then euthanized, testicular samples were collected and histopathological examination of the testicular cells, as well as morphometrical analysis of the seminiferous tubules, were performed. The percentage of spermatozoa showing tail abnormalities increased significantly (P=0.017) in the semen of boars fed gossypol acetate-supplemented feed, while several other semen parameters deteriorated without showing statistical significance. Gossypol acetate supplementation also led to a decrease (P=0.042) in the number of spermatogonia in the seminiferous tubules and an increase (P=0.020) in the number of vacuoles in the seminiferous epithelium, consistent with changes seen in cases of male reproductive toxicity. In conclusion, gossypol acetate negatively affected a number of semen characteristics and also had detrimental effects on the histopathology of the testes.

  • Upgrading breeding value estimation in beef cattle
    451-458
    Views:
    181

    This paper gives a summary of the possibility for applying genomic information for breeding value estimation in beef cattle breeding. This process is called genomic prediction and is now widely used in dairy cattle globally as well as in some beef and sheep populations. The advantage of genomic prediction is a more accurate estimate of the genetic merit of an individual at a young age thereby facilitating greater annual genetic gain, predominantly through shorter generation intervals. Genomic predictions are more advantageous for sex-linked (e.g., milk yield), low heritability (e.g., fertility) and difficult-to-measure (e.g., feed intake) traits. The larger the reference population, on average, the more accurate the genomic predictions; additionally, the closer genetically the reference population is to the candidate population, the greater the accuracy of genomic predictions. Research is continuing on strategies to generate accurate genomic predictions using a reference population consisting of multiple breeds (and crossbred). Retrospective analysis of real-life data where genomic predictions have been operation for several years clearly shows a benefit of this technology.

  • History of origin and development of replacement of plants crop rotations is in world agriculture
    53-56
    Views:
    112

    In practice of world agriculture a long ago the known problem of decline of harvests of agricultural cultures at their permanent growing, scientific explanation of this phenomenon became possible only with appearance of natural sciences. At first the declines of harvests bound to the toxic action of root excretions cultures on her repeated sowing, with development of humus theory of feed of plants of diminishing of harvests at the permanent sowing began to explain impoverishment of soil on a humus.

    During a few centuries the known farmers development the looks in relation to forming of scientific bases of construction of replacement of plants crop rotations in the world systems of agriculture, set history of their development and improvement. The analysis of influence of possibility of optimal satiation of replacement of plants crop rotations is conducted by agricultural cultures on the level of fertility of soil, water and nourishing modes and their productivity. For the terms of the insufficient moistening a positive action is marked black pair on the improvement of the water mode of soil in crop rotations.

    In historiography the problem of introduction and mastering of replacement of plants crop rotations for the decision of scientific and practical tasks of agricultural production is represented in many-sided aspects, worked out and the recommended replacement of plants crop rotations that are base on zonal principle of development of world agriculture that passed the protracted term of test and counted on various specialization of economies. But for today development of scientific and technical progress requires intensification of agricultural production with the use of intensive crop rotations and growing of high-performance cultures.

    Hereupon there was a necessity of realization of analysis of the systems of historical value of scientifically-practical knowledge about development and improvement of replacement of plants crop rotations, as it gives an opportunity to work out to recommending a production with the use of the most effective elements of the past on modern agrarian business and allows to forecast them on the future.

  • Some Practical and Biotechnological Methods for Improving Reproduction Traits in Sheep
    15-20
    Views:
    109

    However, reproduction in sheep is seasonal, many breeds of sheep are able to mate not only in autumn, but out-of-season as well. The main factor determining seasonality is the photoperiod, but other factors can influence reproductive pattern, such as genetics, management practices and social cues. The fertility of spring and early summer breeding is usually lower; this imposes the need for alternative methods (e.g. hormonal treatments, biotechnological practice), to increase the conception rate.
    The author summarize the main practical techniques and biotechnological methods for controlling reproduction completed with some own experimental results in connection with different topics.

  • Harnessing diversity in durum wheat (Triticum turgidum L.) to enhance climate resilience and micronutrient concentration through genetic and agronomic biofortification
    9-20
    Views:
    165

    Huge consumption of wheat-driven food products with low bioavailability and small concentrations of zinc is responsible for zinc-induced malnutrition and associated health complications. The contemporary durum wheat varieties have inherently tiny zinc concentrations in developing grain, which cannot meet the daily human zinc demand. Despite the fact that over two billion people are suffering from iron and zinc-induced malnutrition, various intervention measures have been deployed to reverse the effect of zinc-induced malnutrition on humans. There are evidences that agronomic and genetic biofortification approaches can increase grain yield and nutritional quality (i.e. zinc, iron, protein, and vitamins) of durum wheat to a greater extent. However, there is a lack of direct empirical evidence for which the influence of both biofortification approaches on improving human health. Application of micronutrient-containing fertilizers either in the soil or foliarly is effective in combination with NPK, organic fertilizers coupled with efficient durum wheat varieties, emphasizing the need for integrated soil fertility management (ISFM). Although genetic biofortification is a cost-effective and sustainable approach, agronomic biofortification provides an immediate and effective route to enhancing micronutrient concentrations in durum wheat grain. The application of zinc-containing fertilizers is more effective under drought conditions than in normal growing situations. Hence, this article provides a key information for agronomists and breeders about the potential of biofortification interventions to improve durum wheat yield and enrich the grain qualitative traits to ensure food and nutritional security of the ever-increasing world population.

  • Susceptibility of stem infected sweet corn hybrids to common smut disease
    55-57
    Views:
    363

    The common smut of maize (corn smut, Ustilago maydis /DC/ Corda) can cause large economic losses in susceptible sweet corn hybrids as well. The protection against this pathogen is fundamentally based on prevention. Many methods to control corn smut have been recommended or evaluated, including crop rotation, sanitation, seed treatments, modification of fertility, and biological control. In spite of these frequently mentioned control strategies, the host resistance seems to be the only effective method to manage common smut in those areas where Ustilago maydis is prevalent.

  • Statistical comparison of soil analysing results of chernozem soils
    93-99
    Views:
    118

    The soil fertility was degraded as a result of unreasonable tillage, therefore the application of site-specific nutrient replacement is necessary. It is essential for the application of precision fertilization to know the location, extension, soil properties and nutrient-supply of the different soil types of
    cultivated areas.
    We collected soil samples from 580 hectares of land in 2006. Soil samples were collected from every 5 ha in 30 and 60 cm depths during Spring from 20.05.2006 to 12.06.2006 and again in Autumn from 09.19.2006 to 02.10.2006. Soil samples were analysed at the Department of Agricultural Chemistry and Soil Science of DE-ATC.
    The two examined soils are slightly calcareous, weakly saline, poor in zinc. The calcareous chernozem soil is slightly acid, the content of humus, nitrogen, phosphorus and potassium is medium in this soil. The meadow chernozem soil is slightly alkaline, and properly supplied with humus and potassium, and middling supplied with nitrogen and phosphorus. The meadow chernozem soil is more heterogenous in soil plasticity, lime, saline, nitrogen phosphorus and potassium content and less heterogenous in pH and zinc content than the calcareous chernozem soil.
    Standard deviation of measured values in pH, soil plasticity, humus and nitrogen content significantly differ between the examined soil types. The soil plasticity, pH, humus, nitrogen and zinc content significantly differ among calcareous chernozem soil and meadow chernozem soil, but the difference in phosphorus content can be statistically proven only in case of Spring soil sampling.

  • Magnesium uptake dynamism of maize (Zea mays L.) on prairie soil
    83-89
    Views:
    70

    Different influence factors on the magnesium (Mg) uptake in case of three maize hybrids with different long vegetation period have been investigated at the Experimental Station of the University of Debrecen, Centre of Agricultural Sciences and Engineering, at Debrecen-Látókép. The soil of the experiment is a calcareous chernozem, based on loess, with high fertility, that is characteristic for soils of the region Hajdúság.
    Upon irrigation is the experiment divided to main plots, by different hybrids into sub-plots, while treatments of five nutrientsupply levels with fixed N:P2O5:K2O rate (beside control)mean sub-subplots. Soil samples were taken from the upper, cultivated soil layer 3 times during the year 2008. Their pH has been measures in a 0.01 M CaCl2-solution and their Mg-content from the same solution and from ammonium-lactate acetic acid (AL) extract. Plant samples were taken seven times in the vegetation period, of which we measured the Mg-content. Beside this, the during the
    vegetation period by maize biomass extracted Mg-amount has been calculated using fresh and dry matter weights. The effects of irrigation, hybrids and nutrient-supply levels on the soil pH and on the AL- and CaCl2-extractable Mg-amount have been studied, as well. After that I tried to find a correlation between soil pH and the Mg-content of soil determined in different extractants, beside this between the by the two solutions extracted Mg-amount. 

  • Determining elements of variety-specific maize production technology
    157-161
    Views:
    60

    Our aim was to work out such new maize fertilizer methods and models which can reduce the harmful effects of fertilization, can
    maintain the soil fertility and can moderate the yield fluctuation (nowadays 50-60 %).
    The soil of our experimental projects was meadow soil. The soil could be characterized by high clay content and pour phosphorus and
    medium potassium contents. In the last decade, out of ten years six years were dry and hot in our region. So the importance of crop-rotation
    is increasing and we have to strive for using the appropriate crop rotation.
    The yields of maize in monoculture crop rotation decreased by 1-3 t ha-1 in each dry year during the experiment (1983, 1990, 1992,
    1993, 1994, 1995, 1998, 2000, 2003, and 2007). The most favourable forecrop of maize was wheat, medium was the biculture crop rotation
    and the worst crop rotation was the monoculture.
    There is a strong correlation between the sowing time and the yield of maize hybrids, but this interactive effect can be modified by the
    amount and distribution of precipitation in the vegetation period. At the early sowing time, the grain moistures were 5-12 % lower compared
    to the late sowing time and 4-5 % lower compared to the optimum sowing treatment.
    There are great differences among the plant density of different maize hybrids. There are hybrids sensitive to higher plant density and
    there are hybrids with wide and narrow optimum plant densities.
    The agro-ecological optimum fertilizer dosage of hybrids with a longer season (FAO 400-500) was N 30-40 kg ha-1 higher in favourable
    years as compared to early hybrids.
    We can summarize our results by saying that we have to use hybrid-specific technologies in maize production. In the future, we have to
    increase the level of inputs and have to apply the best appropriate hybrids and with respect to the agroecologial conditions, we can better
    utilize the genetic yield potential.

  • The effect of compost made of sheep manure on the first cut of a semi-natural grassland
    25-29
    Views:
    186

    In an experiment, two types of compost were tested on natural grassland in order to improve the productivity of a natural sward on solonetz soil. Both composts were made of on-farm produced sheep manure, but the second one was enriched in phosphorus. These fertilizers/composts are officially authorized and can be applied in organic farming. Zero application and three rates of fertilizer were tested (10 t ha-1, 20 t ha-1, 30 t ha-1) on 30 m2 experimental plots wit four replications. Dry matter, crude protein and net energy content for maintenance were measured and determined and their yields per unit area were calculated. We found that all the treated plots produced significantly higher yield than the control ones, and in some cases the yields were almost three times higher. However, the optimal compost dose varied, depending on the examined parameter. Based on the evaluation of the experiment results along with rainfall data, it was concluded that, with higher precipitation, the positive effect of the compost application was bigger. The difference between the natural and enriched compost is remarkable, but it has to be mentioned that even the natural compost showed good results; therefore, it is also effective in improving the fertility of grassland.

  • The effect of nickel-contamination, nitrogen-supply and liming on the chemical composition of perennial ryegrass (Lolium perenne L.)
    85-92
    Views:
    90

    Plant-production is determined by many production-factors. Each of these factors became subject of research-works through the years, still we state, that studying their interaction is even more important. For studying these interactions we set up a potexperiment, within that the direct effect and the interactions of four factors was inspected: soil, nitrogen-supply, nickel-loading and liming. Experiments were carried out on two soil types with extremely different characters: one was a chernozem soil with good fertility and buffering capacity, the other was a shifting sand soil with low humus-content and buffering capacity. Nitrogensupply and liming was added on two levels, while nickel on three within 12 combinations on each soil types. Plant production was cut two times within the vegetation period. The amount of production and dry matter was weighted, fractured and their element-content was measured by an ICP-detector.
    Ca-content on the shifting sand soil was determined by all three factors, however the interaction between nickel-loading and liming was also significant. Nitrogen and liming increased Cauptake, that is due to appropriate nutrient-supply and improvement of a better pH-value. On the chernozem soil nitrogen and CaCO3 also increased the Ca-content. This is caused by a better nutrient supply and a higher amount of available Ca-ions.
    On the shifting sand soil nickel content was increasing parallel to higher nitrogen-dosages. In presence of higher nickelamount the nickel-content of plants was also increasing, still according to liming, this increment was different. On the chernozem soil nitrogen a nickel increased Ni-uptake. However, liming also had a positive effect on Ni-content, that can be explained by the high amount on colloids in the soil, the adsorption of Ni-ions on them and in presence of liming material the replacement of Ca-and Ni-ions. 
    The potassium-content on the shifting sand soil was different in each liming-combination. In combinations without nickel the potassium-content of limed and not limed combinations was on the same level. In not limed combinations by adding nickel potassiumcontent was increasing, while in limed combinations no change was observed. On the chernozem soil by adding liming material the amount of uptaken potassium was decreasing, that is due to the antagonism between Ca- and K-ions. 

  • Brief overview of the polymorphism analysis of genes affecting pig prolificacy (LEP, PRLP, ESR BF, EGF, FSH-β, H2A.Z)
    5-10
    Views:
    143

    Researches are being performed around the world to increase swine prolificacy by using marker-assisted selection (MAS). The present study processes researches of polymorphism examinations on 7 genes. The result of the experiments showed that the leptin gene (LEP) prolactin receptor gene (PRLP), estrogen receptor gene (ESR), properdin B (BF) epidermal growth factor (EGF), follicle-stimulating beta gene (FSH-ß) and Z member of the H2A histon family gene (H2A.Z) and their alleles have a positive effect on reproductive characteristics of different swine breeds. In addition to this, leptin gene (LEP) influences the build, meat production and growth of body fat. Further studies are concerned with the polymorphism of an increasing number of genes, which enables a faster genetic development of swine breeding.

  • Soil – Environment – Sustainability
    331-337
    Views:
    179

    The future and life quality of human society depends primarily on the success of the sustainable use of natural resources: the geological strata–soil–water–biota–near surface atmosphere continuum. Soil is the most significant conditionally renewable natural resource in our Earth’s system, with three unique properties: multifunctionality; fertility/ productivity; resilience. In the case of rational land use and precise soil management soil does not disappear, and its desirable „quality” does not decrease considerably, irreversibly and unavoidably. Its renewal, however, requires continuous care and permanent activities.
    Consequently, the prevention, elimination or moderation of soil degradation processes and extreme hydrological situations (the two main factors limiting desirable soil multifunctionality) with rational land use and soil management are the key factors and priority tasks of sustainable development on each level and in each phase of the decisionmaking process.

  • The effect of crop rotation and fertilization on wheat and maize in the pedoclimatic conditions of the Banat Plain
    14-18
    Views:
    68

    The simplification of the plant cultures range and the yields in the last 10-15 years brings into the actuality the role of crop rotation and
    of fertilization on the yield level and stability for wheat and maize even on the soils with a high natural fertility. The results of the researches
    performed between the years 2006 – 2009 on a cambic low gleyed chernozem from the Banat Plain showed that the wheat cultivated in
    monoculture gives productions with 59-81% lower than that cultivated in crop rotation with other plants during 2-4 years. In maize, the yield
    obtained in monoculture is situated behind that obtained in crop rotation with 11-21%. The most favorable crop rotations for wheat were
    rape-wheat in a 4 years rotation and soybean-wheat in simple rotation of 2 years. In maize, the most favorable was the 2 years rotation
    (wheat-maize). The mineral fertilization was very efficient both in wheat (11-36%) and maize (9-31%). The organic fertilization with manure
    was very efficient for maize, the yields being superior with a mean value by 34% for a 60 t/ha dose and with 16% for 30t/ha. The fertilization
    compensates the negative effect expressed by the monocultivation only in a small measure

  • Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
    121-126
    Views:
    73

    Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop production for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
    The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
    In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
    On the basis of results the following can be stated: 
    1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
    inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
    2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
    3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
    4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.

  • Change of soil nitrogen content in a long term fertilization experiment
    39-44
    Views:
    136

    The most important aim of sustainable agriculture is to ensure our natural resources – such as soils – protection, which includes fertility preservation and the use of appropriate methods of cultivation.

    If we want to get accurate information about the occurred changes, way and danger of changes, we should track the resupply and effect of the mineral nutrients and the removed quantity of nutrients with the harvest.

    Nitrogen is an essential element for living organisms and it is present in the soil mainly in organic form. In general only a low percentage of the total nitrogen content can be used directly by plants in the soil. The mineral nitrogen is incorporate by plants into our bodies. This inorganic nitrogen is produced by the transformation of organic contents through mineralization processes and it gets into the soil by fertilization. This is how nitrogen turnover occurs when mineral forms become organic and organic forms become mineral.

    The objective of this publication was to introduce – through some element s of nitrogen turnover- how changing the properties of soil in a long term fertilization experiment.

    We established that the fertilization is influenced the soil pH. With the increase of fertilization levels increased the acidity of the soil, maybe it is related with the number of nitrification bacteria. The fertilization and the rotation affected to the quantity of nitrate.