Search
Search Results
-
The potential use of Pediococcus spp. probiotic in aquaculture: A review
99-106Views:492Aquaculture production has significantly increased over the previous few decades. However, antibiotics have been implemented regularly and extensively to overcome outbreaks of pathogens in aquaculture to cover the human needs for animal protein, leading to the appearance of resistant strains that may cause serious damages in the environment and also human health. In the last few years, the implementation of probiotics as an alternative technique to antibiotics use in fish production has achieved promising results in aquaculture due to their beneficial impact on fish health and growth performance. Among different types of probiotics, the Pediococcus spp. bacteria stand out as a promising probiotic for their beneficial impact to aquaculture. Thus, the current study has been conducted to give an overview about the interactions between Pediococcus spp. and aquaculture. In addition, this review highlights the role of Pediococcus spp in promoting growth performance, improving feed conversion ratios and the intestinal architecture, enhancing the immune response and inhibiting fish pathogens, thereby preventing or at least reducing the use of antibiotics. Practical use of Pediococcus spp. probiotic in aquaculture as feed additives through selected case studies is also considered.
-
The effect of plant density to the yield results and the yield components of maize hybrids
89-93Views:228Maize is the crop that is produced on the second largest area in our country, in Hungary. It is planted on nearly 25% of the country’s growing area and it was produced on 1 090 439 hectares in 2016. Despite the continuous development of the biological basis and production
technology, the growth of the yield results is not constant, its fluctuation is significant. It can be even up to 60%, because of the extremity of the years. The exploitation of the yield potential of modern hybrids is possible if we harmonize the effects of the ecological factors and properly applied instruments of agro technology and by these we ensure their interaction to reach a favorable outcome. The applied plant density is an important, well researched, but at industrial level a not enough utilized element of the maize production.
The results of the extensive tests, done between 2009 and 2015, showed that the genotype, the year effect and the plant density are in strong correlation with each other determining the yield results. In the past seven years the examined genotypes reached the highest yield
performance at the highest plant densities. The early hybrids (RM90–95, FAO 200–300) are capable of producing them at higher plant density, while in case of the mid and late maturity varieties the further increasing of the density after reaching the optimum level led to yield depression.
According to our experimental results, the yield is in close positive correlation with the increase of the plant density. The effect of the growing season has great significance in forming the yield results and this determines the applicable plant density too.
The yield of maize is determined by a resultant of components. The main component is the number of ears per plant and the amount of kernels per ear, which is calculated from the number of kernels on an ear and the weight of them. The number of the kernels on an ear is
calculated from the number of rows on the cob multiplied by the number of seeds in one row on the cob. In dry years, at lower yield levels the yield decreases because of the shorter ears, while at the higher levels the number of kernels in a row and the thousand-kernel weight decreases,causing yield depression this way. From our examinations it turned out that the plant density reaction of a genotype is individual, every variety reaches its maximum kernel number per hectare – in other words the maximum yield - in an individual way. -
Topology in the fruit plantation
253-257Views:441The localization of fruit trees, the topology of the branch structure and the spatial structure of the canopy are important to plan sitespecific agro-ecological and production technology projects in an orchard. The currently used instruments and technologies – in the precision agriculture – give opportunities to obtain these informations. The examinations were carried out in the Study and Regional Research Farm of the University of Debrecen near Pallag with the use of a GreenSeeker 505 Hand Held™ Optical Sensor Unit, and its interface the Trimble AgGPS FmX Integrated Display board computer. The collected spectral data were completed with the 3D point cloud by Leica ScanStation C10 laser scanner. The laser impulse data and the vegetation index values were integrated in a unified 3D system. The integration of the two special data collection system provides new opportunities in the development of precision production technology system. The results could be directly used in phytotechnology, water management, plant protection and harvesting in orchards. Our elaborated method can supply digital high spatial accuracy guidance data for development of the automated machines, which could provide some new developmental way in the immediate future.
-
Comparative study of different soybean genotypes in irrigation technology
91-95Views:673In many places in Hungary, early maturity soybean can be successfully grown. The earlier maturity group of soy which ripened in 110–125 days in most crop areas in Hungary. However, to achieve excellent results, the selection of proper varieties is important too. Successful cultivation is largely dependent on the macro and microclimate of the production area, the nutrient supply of the soil and the cultivation technology. Soybean can be produced in places where the amount of precipitation is right, as the lack of water results in lower yields and deteriorated oil and protein concentrations. In the following study, 2 years (2016 and 2017) are compared to the yield, protein and oil content of the soybeans of the early maturation group in irrigated and non-irrigated treatments. Based on our experiment, it can be stated that, during the irrigation of soybean, oil and protein content and yields did not always change.
-
The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids
143-147Views:306In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.
Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.
The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.
In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.
The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.
However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.
As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.
-
Potential use of bamboo in the phytoremediation in of heavy metals: A review
91-97Views:757There are many literature sources focusing on the phytoremediation of woody plants, but there are only few dealing with the phytoremediation of bamboo plants. Phytoremediation technology has the advantages of little disturbance to the environment and low remediation cost. Bamboo mainly exists in tropical and subtropical regions. As an energy plant, bamboo has a fast growth cycle, large biomass, simple cultivation, high economic efficiency, and convenient harvesting, which highlights the advantages of bamboo in phytoremediation. In addition, bamboo plants have good tolerance and uptake ability to heavy metals and have high application potential and development value in uptaking heavy metal contaminated soil. However, due to climate, temperature and other reasons, bamboo cannot be widely planted in most countries. Research status of remediation of heavy metal contaminated soil by bamboo plants is summarized. The feasibility of its application in heavy metal contaminated soil is discussed in this paper. Aiming at the shortcomings of existing research, bamboo plants have a prospect in the field of plant phytoremediation for the future.
-
Does the feeding frequency influence the growth performance of European perch juveniles (Perca fluviatilis) during intensive rearing?
123-128Views:322The European perch (Perca fluviatilis) is a predatory fish species. Its aquaculture production is increasing worldwide. Feeding and the frequency of feeding are important elements of intensive fish rearing. The aim of our experiment was to examine the optimal distribution of the amount of feed, at the same feed rations. The experiment lasted 42 days. Three treatments were applied in 4–4 replications. The first treatment was feeding twice per day (T2), the second treatment was feeding three times a day (T3), and the third group was fed four times a day (T4). 10 European perch juveniles were stocked per tank, with an individual mean body weight of 3.93 ± 0.06 g at the start of the experiment. The survival rate (S%) was above 90% for all treatments. The T2 treatments produced the most favourable harvest weight (13.96 ± 0.14 g) and specific growth rate (SGR = 3.08 ± 0.01% day-1), but no significant differences were observed between groups. In terms of feed conversion ratio, the best result was obtained by (T3) (FCR =1.06 ± 0.18 g g-1), but no significant difference was found for this indicator neither. The results of the trial indicate that the feeding frequency does not influence the production parameters.
-
Physical and chemical treatment of poultry feather from the slaughter-house
51-56Views:182The 15-20% of the by-products of meat – and poultry industry – that unsuitable for human consumption – contains keratin. The slaughter technology of poultry produces large amount of poultry feather with 50-70% moisture content. This means more million tons annually worldwide (Williams et al., 1991; Hegedűs et al., 1998). The keratin content of feather can be difficulty digested, so physical, chemical and/or biological pretreatment is needed in practice, which has to be set according to the utilization method.
Our applied treatments were based on biogas production, which is a possible utilization method. In the IFA (TULLN) Environmental Biotechnology Institute the feather was homogenized, and – according to the previous examinations – the most effective 1:2 feather-distilled water ratio or 1% NaOH-solution was used, and then treated with microwave (70, 130, 160 °C) during 1 hour time period. DM% and oDM% content was analyzed in the original samples, and the pH, Carbon-, Nitrogen-content in the output, too. Based on the received correlation coefficients (R) and related significance values (Sig.) I concluded, that the C-, N-content and the pH values weren’t influenced by any of the additives. The temperature
affected all three tested factors. The temperature showed a strong coherency with the N-content and the pH value when distilled water was used and weak-medium coherency with the Carboncontent. With NaOH-solution treatment the temperature gave strong coherency with the C- and N-content, as well as medium coherency with the pH. Our objective was to determine the method with effectively the pre-treating of poultry feather for biogas production or composting and to prepare of the treated samples for N and C analyzing. Our next aims will be the elaboration of the technological parameters of heat pre-treatment and microbial digestion of poultry feather for biogas production. -
Evaluation of Dairy Farms’ Competitiveness
256-260Views:102The volume of milk production in the European Union is limited by quotas, thus dairy farms in Hungary can expand their production mostly at the others’ expenses after joining. In this way issues of arrangements arise relating to defining competitiveness of the already existing farms and not to farming new ones. The aims of my research is to find answers for dairy farms in the County of Hajdu-Bihar, depending on their arrangement (herd size, keeping technology, arable for forage production, handling manure, mechanisation, technician state of equipment) what possibilities they will have among the EU farmers.
-
Complex problem analysis of the Hungarian milk product chain
43-47Views:187Hungarian dairy sector went through significant changes in past two decades. The most significant changes were caused by our accession to the European Union. In Hungary milk production remarkably declined after EU accession. The size of our dairy herd has been practically reducing since the political transformation, but increasing yields per cow could compensate it in some way and for some time. However, in recent years, increasing yield per cow came to a stop and in parallel, the number of cows declined further and faster. Low prices, high production costs and tightening quality requirements ousted several producers from the market in past years. Feeding cost represents the highest rate in cost structure of production, but animal health expenditures and various losses are also significant. There are undeniably competitive disadvantages in the level of organisation and labour productivity; however competitiveness already depends on cost effectiveness in the medium run. In Hungary concentration of the dairies is relatively strong in spite of the relative high number of corporations. The dairies compete with each other and with the export market for the raw material and the better exploitation of their capacities. Applied technology of the Hungarian dairies lags behind the Western-European competitors’; in addition they have handicaps in efficiency and product innovation. Presence of chain of stores being dominant in sale of milk products does also not favour in all respects to the position of the dairies. The aforementioned retail chains are namely consumer-centric, engage in price follower conduct and weaken the position of the dairies with their private label products. As a result of increasing import of milk and milk products Hungary became a net importer in recent years. Today, disposable income still essentially determines the consumption habits of price-sensitive consumers. Loyalty for Hungarian products is not typical, consumers are open for import products being preferred by retail chains. In addition Hungarian milk and milk product consumption is about half of the Union average and it is far behind the level being necessary for healthy eating. In Hungary lack of competitiveness and vertical integration relationships and backwardness are revealing among the dairy farmers and the dairies, while chain of stores are in unprecedented “monopolistic situation”; the whole sector can be characterised by defencelessness.
-
Assessment of energy generated by biogas production in the educational industrial unit of the University of Szeged, Faculty of Agriculture, with special regard to biomass originating from agriculture and the food industry
137-140Views:160The importance of waste treatment is increasing. Environmental aims are the main driving force. Stricter regulations for landfills lead to the development of alternative treatment methods for waste. For agro-mechanical research, wastes from animal rearing and the food industry, secondary-tertiary biomass, is of deep concern. Available technology is versatile and relatively simple to use as a reliable and effective means of producing a gaseous fuel from various organic waste. The most common application has been the digestion of animal dung, agricultural, and food-industrial waste. This was studied by our department in our pilot farm of our Faculty. The 50-dairy cow, family sized model farm was built in the summer of 1991, as a result of a Dutch – Hungarian cooperation, on the property of the Faculty. The new pig farm, with 30 sows, and the new goat farm, with 100 nannies, was given to the Faculty on 25 April 2001. On the basis of livestock data, the annual dung production and the producible energy were determinate. The energy was calculated by biogas production coefficients in literature.
-
Impact of precision irrigation on the unit income of maize production
157-162Views:252The study of the economic/economic impact of precision farming should be a priority area in digital agriculture, as the results, profitability, and efficiency indicators can have a significant decision-support effect on the development of both the agronomic and the technical regions of individual farms both in the longer and shorter term. Individual firms, companies, farmers, and family farms quantify the effectiveness of their farming processes. The modern age offers the possibility of digitally recording all the elements of farming technology, making it possible to analyse the cost-effectiveness of a farm more effectively and, in some cases, to carry out more detailed analyses. Nevertheless, the number of farms demonstrating their profitability with such precise economic calculations is still minimal.
Our analyses were conducted on a 56,02 ha field of Balogh Farm-Tépe Ltd. The agricultural operations carried out were fully documented so that the inputs (seeds, fertilisers, pesticides, crop enhancers) were recorded in coordinates and kind, as well as the specific yields, grain moisture data, irrigation norms, and irrigation rotations. At the same time, the company's owner provided the data's monetary value. The main econometric indicators (yield, production value, cost of production, income, cost price) related to the evaluation of the enterprise management were evaluated along with the spatial data in the irrigated and non-irrigated tables. Our calculations show that a given year's climatic and market characteristics fundamentally determine the cost and income relations of a plot of land (and thus of an entire farm). In addition to additional inputs, introducing some elements of precision farming and intensification and increasing yields improves yield security and allows for excellent yield stability.
-
The effect of season and fertilizer on the LAI, the photosynthesis and the yield of the maize hybrids with different genetic characteristics
27-34Views:258The experiment was carried out in Debrecen, at the Experimental Station of the University of Debrecen Centre of Agricultural Sciences, Department of Crop Production and Applied Ecology. We tested 10 various hybrids with their own genetic characteristics for five different fertilizer doses, in addition to the parcels without fertilization. The three factors of production technology jointly determine the successfully of maize production, but in different measure. The yield and the stability of yield of maize can be increased with hybrid-specific technologies.
In 2004-2005 experiment years the favorable results reached were due to the rainy season. There were significant difference between the productivity of maize hybrids. The N 40, P2O5 25, K2O 30 kg/ha treatment caused the highest increase of yield (3-5 t/ha) compared to the control (parcels without fertilization). The reaction of hybrids to the further fertilizer doses was different. The agro-ecological optimum of NPK fertilization was N 120, P 75, K 90 kg of the most hybrids.
During the experiment, we tested the moisture loss of the five hybrids. The seed moisture content at harvest was higher than in previous years due to the rainy seasons. The seed moisture content of harvest of FAO 200-300 hybrids were about 20%. It changed between 21-24% in the case of hybrids with longer vegetation period (FAO 400), the seed moisture content of Mv Vilma (FAO 510) was 24.21-25.04% in the average of fertilizer treatments. There is an important difference between the moisture loss ability of hybrids which changed 0.2-0.6%/day. The moisture loss of hybrids changed depending on the fertilizer treatment; usually, it was more favorable in the optimal fertilizer dose (N120+PK).
In the case of tested hybrids, we measured the highest LAI and photosynthetic activity at the optimal treatment, N 120, P2O5 75, K2O 90 kg/ha in the respect of efficiency and environmental protection, and the yield was high also for this treatment. There are significant difference between the LAI, the photosynthetic activity and the yield of hybrids, and these values could change depending on the treatment of fertilization. -
Stevia (Stevia rebaudiana B.) yield in the case of different production technologies
71-77Views:328Stevia rebaudiana B. offers a natural alternative of sweetening, potential health promotion plant, and our country shows increased interest about cultivation in Hungary in addition to the neighboring European countries. The agricultural production system installation necessary
understanding of the needs of the plant, as well as exploring the agronomic potential. Field experiments were conducted in 2015 with the aim to highlight some of the technological production parameters and correlations between them. We have reviewed the most important agronomic factors, the spacing (50×50 cm and 33×33 cm), ground covering (agro-cloth covered and uncovered/ control), their vegetative growth (first-,second-order branch), herb yield and quality in effect.
Based on empirical evidence, that the Hungarian climates also have the opportunity of 3 cuttings during a growing season, besides of early planting, optimal climatic conditions (in October didn’t reduce the daily minimum temperature below 0 °C, after cuttings the maximum interval values remain below 40 °C), and adequate water supply and crop protection facility. The 33×33 cm spacing evaporates more than 50×50 cm spacing, because of the dense population, the continuous canopy less able to breathe, so there are serious chances to the pathogen colonization.
Based on the results of our research to the wider 50×50 cm spacing favorable appreciate the stevia optimal progress in terms of qualitative and quantitative parameters of the yield. The stevia yields produced in the Northern Great Plains field cultivation can produce similar results as stevia crop yields in warmer climates, where the primary crops. Our research experience suggest that there is a viable domestic stevia cultivation, developing the necessary technology is still growing further investigation justifies. -
Effects of soil cultivation and environmental changes on maize yield
97-100Views:270We evaluated the relationships among soil cultivation and other agrotechnical factors (fertilization, number of plants and hybrid) within the framework of a multifactorial long-term experiment set at the Látókép Experimental Site of the Centre for Agricultural Sciences of the University of Debrecen in mid-heavy chalcareous chernozem soil based on a long-term experiment conducted for a 5-year period (2002–2006).
Based on the evaluation of soil cultivation by the average of treatments, it may be assessed that spring ploughing (8.204 t ha-1) provides more favourable conditions to the stand compared to spring shallow cultivation; however, this did not result in a significant difference. Spring ploughing considerably increased the yield of hybrid FAO 300 in dry years, whereas it considerably increased the yield of hybrid FAO 400 in favourable crop years. A stand of 70 thousand stems/ha provided the higher yield result in both soil cultivation types. It was sufficient to use a fertilizer dose of 120 kg N ha-1 for economical production.
-
The Examination of Some Determining Elements of Efficient Practical Sweet Corn Growing
81-85Views:232We did the detailed agronomy examination and assessment of sweet corn cropping technology by analysing the data of TONAVAR Ltd. The Ltd. developed a special sowing construction which is based on band application of main sowing and double growing. In main sowing they use super sweet hybrids, and in double growing they use normal sweet varieties. In double growing sugar peas and the sweet corn can be cultivated together successfully. In every two years appearing sugar peas has a good effect on the sweet corn growing in monoculture. At the same time
the long-term successfulness of this questionable onto the illnesses of the peas because of the considerable sensitivity.
According to our examinations in main sowing the optimal period is between May 1. and 30., and in double growing the optimal period of sowing is between June 1. and 20. The optimal plant density is different too for the two sowing time. For super sweet hybrids the optimal plant number is 60-63 thousand/ha and for the normal sweet that is 65 thousand/ha.
Our examinations show that soil pest (defence with soil sterilisation in sowing time), Diabrotica virgifera, Helivoverpa armigera, Ostrinia nubialis are the greatest danger for the sweet corn quantity and quality.
The use of herbicides is the most efficient in the postemergens in main sowing and preemergens in second crop.
Our examination shows that the efficient sweet corn growing cannot be imagined without irrigation. The most efficient irrigation is in main sowing in the critical fenophase of crop time. In double growing the initial irrigation, and the crop irrigation are the most efficient. Based on the production data verifiable that beside the application of the discribed growing technology in the 2005-2007 years the average yield was 20,9t/ha of main sowing, and 17,8t/ha of second crop on chernozem soil in the Hajdúság. -
Agronomical and economic evaluation of various cultivation systems on meadow soil
103-106Views:186The requirements and objectives of cultivation are in constant change. There are different cultivation aims if the objective is soil protection, the prevention of its moisture content or on areas with different precipitation supply or production site endowments. Based on the experimental database of the Institute for Land Utilisation, Regional Development and Technology of the University of Debrecen, Centre for Agricultural and Applied Economic Sciences and the KITE Plc., the various cultivation systems in Hajdú-Bihar country were examined with maize as indicator plant. The sample area can be found in the outskirts of Biharnagybajom on meadow soil. On the examined plot, spring strip basic cultivation, loosening and autumn ploughing were applied on 15-15-15 ha, respectively. At the time of taking undisturbed soil samples, soil conductivity measurements were also performed with a Penetronik penetrometer. Undisturbed soil samples were taken from each treatment before sowing (on 5th April 2012). The yield obtained in the strip cultivation treatment increased that of the ploughing and the loosening technology. The economic indexes are the most favourable in the strip cultivation.
-
Role of some agrotechnical elements in the precision crop technology of cereals
241-244Views:272The crop models and precision technology have an important role in the development of winter wheat and maize agrotechnics, which crops have determinative role in Hungarian crop production. The effects of agrotechnical elements (crop rotation, fertilization, irrigation, crop protection, plant density) were studied in our longterm experiments on chernozem soil. Our scientific results proved that the high yields, and good yield stability were obtained in the input-intensive crop models. Maize had lower ecological adaptive capacity than winter wheat. The optimatization of agrotechnical elements reduces the harmful climatic effects so we can increase the yield and yield stability of cereals agro-ecosystems. The yields of wheat varied between 2 and 7 t ha-1 in extensive and 8 and 10 t ha-1 in intensive crop models and the yields of maize ranged between 2 and 11 t ha-1 and 10 and 15 t ha-1, respectively.
-
Evaluation of harvesting technology of vineyard pruning based on a Mátra wine region case study
91-100Views:193Wineyard pruning utilization for energy purpose is not only a theoretical possibility, the machine background has also been developed. Economic- and environmental experimentations has made by specialists and they seek to developed the best practice in logistics suitable for local conditions and they propagate the results for the potential users. Nevertheless, the utilization does not seem to be typical in Hungary and some other wine-grower countries. For example, in Hungary the additional energy from vineyard pruning eventuates – tillage, nutrient supply; – phy+tosanitary, environmental pollution; – energy management and economic questions.
In Hungary the most important problem is practice of the vineyard pruning utilization were mentioned by the users is the establishment of collection system and the high logistic costs as Marczinkó (2007) experiences confirm this. As I experienced in practice, the winegrowers are uninterested in utilization. Most of them burn it at the end of the vineyard in many cases without considering of the relevant statutory prohibition.
As my own several years expriment shows at Mátra wine region it is not the technical background which causes the failure. We can use effectively balers or chippers for collection. The cost of chipping is 14 535–27 000 Ft per hectars with the introduced technologies on Mátra wine region. The cost of 1 GJ of heat production is 606–1125 Ft. We can substitute the fuel with vineyard pruning and it means approximately 115 000 Ft saving for a family household per year.
-
Changes in weed flora of basket willow (Salix viminalis L.) under different soil nutrient supply
116-120Views:224The world is in a continuous progress, as a result of which energy consumption and with this the release of gases with adverse impact show rapid increase. As a result of the survey conducted by the International Energy Agency, if the major economic powers do not initiate a change in their energy policy, the increase of energy consumption may as well reach 40 % by 2030. This increased energy demand is getting more and more difficult to fulfill with the fossil energy resources, which is to lead to an increasing significance of renewable energy resources. In Hungary, these energy resources are the best to provide with biomass growth. Biomass growth for energetic purpose can mostly be provided by energy plants, out of which “energy willow” (Salix viminalis L.) is outstanding with its high yield and with its excellent burning technology characteristics of its timber. The willow’s cropping technology is being established in our country. One of our tasks is to work out an adequate weed control plan. The professional and safe use of herbicides can increase the success of production. In our paper, we discuss the weed flora data collected on treatments applied in the different fertilizer and compost. We started our survey in 2010. We examined twelve different fertilizer and compost treated areas. The dominant weeds were: Amaranthus retroflexus, Chenopodium album, Echinochloa crus-galli among annuals; Cirsium arvense and Agropyron repens among the perennials.
-
The significance of biological bases in maize production
61-65Views:258The comparative trial has been set up in the Demonstration Garden of the Institute of Crop Sciences of the University of Debrecen, Centre for Agricultural and Applied Economic Studies, Faculty of Agricultural and Food Sciences and Environmental Management in 2012, with 24 hybrids with different genetic characteristics and growing periods. The soil of the trial is lime-coated chernozem, with a humus layer of 50–70 cm.
The weather of the trial year was quite droughty; the monthly average temperature was 3–4 oC higher than the average of 30 years. High temperature, together with lack of precipitation occurred during the most sensitive phenophases of maize (flowering; fecundation, grain saturation).
The following characteristics have been observed: starting vigour, date of male and female flowering, plant and cob height, dry-down dynamics during maturation and the change of yield composing elements has also been quantified. The yield was recalculated to 14% moisture content grain yield after harvesting.
The beginning of the growing period was advantageous, therefore the analysed hybrids could grow a high (above 300 cm) and strong stem. The yield of the hybrids changed between 10.33 and 11.87 t ha-1, but as a result of the unfavourable climatic extremes, their genetic yield potential prevailed only at a rate of 30–40%. However, moisture content by the time of harvesting was good despite its early date (12th September); it remained under below 14% in most cases. Dry-down was measured on a weekly basis between 14th August and 5th September.
The analysis of the qualitative parameters of the maize hybrids (protein %, oil % and starch %) resulted in significant differences. The most significant difference has been observed in the case of protein content (LSD5%=2.01). Oil content was the most advantageous in the case of hybrids belonging to the mid-late growing group (FAO 400). The X9N655 and 36V74 hybrids had the highest oil content (around 4%), while hybrids P9915 and 37F73 had significantly lower oil content. Starch content was above 70% in the case of every hybrid.
Hybrid selection is highly important in terms of yield and yield security of maize, as well as the application of modern biological fundamentals and hybrid specific technology for the improvement of the level of cultivation technology.
-
Biofuel production and its quality standards
137-141Views:295The increasing consumption due to the decreasing amount of fossile energy resources, as well as the increasing fuel prices and living standard will justify the better utilisation of the opportunities lying in biofuel production. Certain countries produce biofuels for their own use or they even export them. However, there are countries which have not decided which feedstock and technology to use. Biofuel – mainly biodiesel and bioethanol – use greatly contributes to environmental protection, decreased CO2 emission and reduced greenhouse effect.
-
Biomethane production monitoring and data analysis based on the practical operation experiences of an innovative power-to-gas benchscale prototype
399-410Views:580Power-to-gas (P2G) is referred to technologies that convert carbon dioxide into methane. Both bio- and chemical catalysts may be used for conversion purposes. One of the most disruptive biotechnologies was developed by the University of Chicago (IL) (publication number: EP2661511B1), using a robust, highly selective, patented strain of Archaea. Electrochaea GmbH has developed an innovative bench-scale P2G prototype unit, which uses this highly efficient Archaea strain, specialized components and specifically developed control strategies. The structure and the components of the prototype are equivalent with the functional parts of the currently largest commercial scale biomethanation BioCat plant located in Avedøre, Denmark (www.biocat-project.com). Power-to-Gas Hungary Kft. has committed to further develop this innovative technology. The first steps of this development have been taken by operating the benchscale unit and analyzing the data of the operating periods.
The prototype is operated based on weekly campaigns. During continuous operation, H2O is generated as a by-product of methane. Therefore, approximately 200 ml of biocatalyst is discharged each day and concentrated media containing macro and micronutrients are injected into the reactor to maintain media composition. The laboratory staff records all gas composition data each morning. The gas composition is measured every 12 minutes by an Awite AwiFlex Cool+ gas analyzer. Within this article, we analyze the collected datasets containing more than 12 000 records and present the first practical experiences of the operations of the innovative power-to-gas bench-scale prototype.
The analysis of the collected gas composition data of the product gas already provides important data for modelling the commercial-scaled processes. The average value of VVD was about 40 l/l/d in the period under review. Further increase of the methane content can be achieved by introduction of higher mixing energy and by increasing pressure levels in the bioreactor (as demonstrated in the BioCat plant – data not shown here) – both of which are strategies envisioned for the commercial plant. In routine activities (turn on, shut down, continuous operation) we could verify the high robustness of the biocatalyst and the base connection between the registered datasets and performed test results.
-
Determining elements of variety-specific maize production technology
157-161Views:227Our aim was to work out such new maize fertilizer methods and models which can reduce the harmful effects of fertilization, can
maintain the soil fertility and can moderate the yield fluctuation (nowadays 50-60 %).
The soil of our experimental projects was meadow soil. The soil could be characterized by high clay content and pour phosphorus and
medium potassium contents. In the last decade, out of ten years six years were dry and hot in our region. So the importance of crop-rotation
is increasing and we have to strive for using the appropriate crop rotation.
The yields of maize in monoculture crop rotation decreased by 1-3 t ha-1 in each dry year during the experiment (1983, 1990, 1992,
1993, 1994, 1995, 1998, 2000, 2003, and 2007). The most favourable forecrop of maize was wheat, medium was the biculture crop rotation
and the worst crop rotation was the monoculture.
There is a strong correlation between the sowing time and the yield of maize hybrids, but this interactive effect can be modified by the
amount and distribution of precipitation in the vegetation period. At the early sowing time, the grain moistures were 5-12 % lower compared
to the late sowing time and 4-5 % lower compared to the optimum sowing treatment.
There are great differences among the plant density of different maize hybrids. There are hybrids sensitive to higher plant density and
there are hybrids with wide and narrow optimum plant densities.
The agro-ecological optimum fertilizer dosage of hybrids with a longer season (FAO 400-500) was N 30-40 kg ha-1 higher in favourable
years as compared to early hybrids.
We can summarize our results by saying that we have to use hybrid-specific technologies in maize production. In the future, we have to
increase the level of inputs and have to apply the best appropriate hybrids and with respect to the agroecologial conditions, we can better
utilize the genetic yield potential. -
Effect of sowing technology on the yield and harvest grain moisture content of maize (Zea mays L.) hybrids with different genotypes
17-22Views:242From the aspect of the efficiency of maize production harvest grain moisture content shall be considered beside the amount of harvested grain yield. Hybrids with different genotypes and vegetation period length lose their moisture content different that is affected by row spacing and plant density – among agrotechnical production factors – depending on the given crop year. In the present research work three crop years with different weather conditions were studied (2013, 2014, and 2015). The small-plot field experiment was set up at the Látókép Field Research Centre of the University of Debrecen, Centre for Agricultural Sciences with four replications on a chernozem soil type. The effect of three factors was analysed in the experiment on yield amount and its moisture content. Factors were row spacing (45 and 76 cm), plant density (50, 70 and 90 thousand plants ha-1), while hybrids were of very early (Sarolta: FAO 290), early (DKC 4014: FAO 320, P 9175: FAO 330, P 9494: FAO 390) and medium (SY Afinity: FAO 470) ripening.
In the crop year of 2013 the highest yield was produced – regarding the average of the hybrids – by the application of a row spacing of 45 cm (4.5%, 673 kg ha-1), however there was no significant difference between the yield of the populations of different row spacings. Significant difference (14.9%, 1751 kg ha-1; 6.3%, 583 kg ha-1) could be found in case of yield between different row spacing applications in 2014 and 2015. The effect of insufficiently distributed low amount of precipitation and lasting heat days in 2015 could be revealed in yield amounts and harvest grain yield moisture content results that were lower than in the previous years. In 2015 grain yield moisture content varied between 10.3 and 13.9% in case of a row spacing of 45 cm, while by 76 cm between 11.0 and 13.9%.