Search

New challenges in soil management
91-92
Soil management represents two important tasks that are harmonization of the soil protection with demands of the crop to be grown on the given land under prevailing farming condition. Further goals are to preserve and/or develop the soil physical, biological and chemical condition and to avoid the unfavourable changes of the soil biological activity and the soil structure. Classical authors emphasised the importance of creating proper seedbed for plants. In the physical approach, tillage was believed to play an important role in controlling soil processes. Consequently, the period of several centuries dominated by this approach is referred to as the era of crop-oriented tillage (Birkás et al., 2017). The overestimation of the importance of crop requirements resulted in damaging the soils, which inevitably led to turn to the soil-focused tillage. Since the first years of climate change, as the new trends have raised concern, tillage must be turned into a climate-focused effort with the aim of reducing climate-induced stresses through improving soil quality.
The development of soil management has always been determined by the economical background. At the same time, deteriorating site conditions have contributed to the conception of new tillage trends by forcing producers to find new solutions (e.g. dry farming theory in the past or adaptable tillage theory nowadays). Győrffy (2009) recited the most important keywords were listed in 2001 and that seemed to be important in the future of crop production. These keywords (endeavours) were as follows:
− Biofarming, organic farming, alternative farming, biodynamic farming, low input sustainable agriculture;
− Mid-tech farming, sustainable agriculture, soil conservation farming, no till farming, environmentally sound, environmentally friendly, diversity farming;
− Crop production system, integrated pest management, integrated farming, high-tech farming;
− Site specific production, site-specific technology, spatial variable technology, satellite farming;
− Precision farming.
Győrffy’s prognosis proved to be realistic and the efforts mentioned above have mostly been implemented. New challenges have also appeared in soil management in relation to the last decades. The most important endeavours for the future are:
1) Preserving climate-induced stresses endangering soils.
2) Turn to use climate mitigation soil tillage and crop production systems.
3) Applying soil management methods are adaptable to the different soil moisture content (over dried or wet may be quite common).
4) Use effectual water conservation tillage.
5) Use soil condition specific tillage depth and method.
6) Adapting the water and soil conservation methods in irrigation.
7) Preserving and improving soil organic matter content by tillage and crop production systems.
8) Considering that stubble residues are matter for soil protection, humus source and earthworm’ feed.
9) Site-specific adoption of green manure and cover crops.
10) Applying site-adopted (precision) fertilization and crop protection. Considering the development in agriculture, new endeavours will occur before long.
167
137
The effect of zinc fertilization on the yield and element content of ryegrass
27-31

The effect of Zn fertilization on the yield and Zn, N, P, K, Mg and Mn content of ryegrass was studied in a greenhouse experiment for 8 chernozem soils with three replicates under uniform NPK supply and irrigation. The applied Zn rates were 0, 2.5 and 5 mg/kg Zn. Due to Zn doses the yield incrased significantly. Zn fertilization increased the plant Zn content and decreased the plant P and Mn content significantly. For N, K and Mg there was no significant effect.

86
112
Comparative analysis of sample preparation methods to determine the concentration of arsenic in soil- and plant-samples
167-170

Arsenic contamination of the fields and groundwater is a global problem. Alföld is the most affected area in Hungary. Irrigation witharsenic contaminated water, and crop production on the contaminated soil can cause a food safety problem, because arsenic is easy taken up by the cell of the plant roots. To prevent this, very important to monitoring the arsenic content of soils and plants. Inductively coupled plasma mass spectrometry (ICP-MS) is a fast, easy method to determined the concentration of minerals in the case of plant and soil samples The analytical methods can give reliable, results if the analytical process, including the sample preparation method, is the best. The objective of this study was to compare 3 type of sample preparation method which was dry ashing, wet digestion in open system, and microwave digestion. As a result of our experiement shows the microwave digestion is the appropriate method to determined the arsenic content of soil samples. In the case of plant samples we can use wet digestion in open system or microwave digestion as a samle preparation method.

106
153
Usage of Different Spectral Bands in Agricultural Environmental Protection
123-126

Hyper and multispectral imaging systems are widely used in agricultural and environmental protection. Remote sensing techniques are suitable for evaluating environmental protection hazarsd, as well as for agriculture resource exploration. In our research we compared aerial hyper and multispectral images, as well as multispectral digital camera images with the background data from the test site. Hyperspectral records were obtained using a new 80-channeled aerial spectrometer (Digital Airborne Imaging Spectrometer /DAIS 7915/. We have chosen two farms where intensive crop cultivation takes place, as test sites, so soil degradation and spreading of weeds can be intensive as a result of land use and irrigation. We took additional images of air and ground with a TETRACAM ADC wide band multispectral camera, which can sense blue, green and near infrared bands. We had detailed GIS database about the test site. Weed and vegetation map of the area in the spring and the summer was made in 2002. For soil salt content analysis, we gathered detailed data frome an 80x100 m area. When analyzing the images, we evaluated image reliability, and the connection between the bands and the soil type, pH and salt content, and weed mapping. In the case of hyperspectral images, our aim was to choose and analyze the appropriate band combinations. With a TETRACAM ADC camera, we made images at different times, and we calculated canopy, NDVI and SAVI indexes. Using the background data mentioned above, the aim of our study was to develop a spectral library, which can be used to analyze the environmental effects of agricultural land use.

65
98
Vegetative shoot growing and yield productivity of different plum cultivar and rootstocks combination
25-29

We planted containers plum rootstocks and cultivar combinations for irrigation and rootstocks experiment. We planted Cacanska lepo tica, Katinka, Jojo, Topfive, Toptaste, Topper plum cultivar on Mirobalan, St Julien A, St Julien GF 655/2, Wavit, Wangenheim, and Fereley rootstocks. Before budding we measured the trunk diameter on trees, than I count the trunk cross area, we measured the high of trees, the high of crown, and the wide of crown, and counted the volume of crown from these data. We conclude the vigorous from the trunk cross area and the volume of crown. In the started growing less vigorous combinations look like Topfive/Wavit, Jojo/Mirobalan and Katinka/Mirobalan grafted on the basis trunk cross area and the volume of crown. In the vegetative period we measured the shoot growing on model branch every started of months. So we could determine the growing tendency. The smallest growing was Cacanska lepotika/Mirobalan. 
In the flowering the grafted flowered in rich, excepted the Topfive cultivar on St Julien A, St Julien GF 655/2, and Fereley rootstocks, these didn’t flowered. The Topfive/Wavit combinations there were a richest flower. 
In the harvest term we could pick up plum fruits from Topfive/Wavit combinations, and Cacanska lepotica, Jojo, Toptaste cultivar. And in addition the Topper cultivar was the highest yield on their all of rootstocks.

91
229
Comparison of the geranium (Pelargonium) pathological results of 2016-2017
123-125

The research was carried out in a Gyenes Flower gardening between 2016 and 2017 in Kecskemét. The gardening was founded in 1978. Initially, the main plants were gerbera (Gerbera) and yucca (Yucca), later replaced by the geranium (Pelargonium) cultivation as a result of market demand. In horticulture, there are about than 80 variety geranium of the standing, running, semi-trailer types and English gnawing. The Pelargonium had different sizes and colors. The study was set up in 1,000–1,000 pieces of geraniums each year. The following pathogens have damaged the geranium stock: Botrytis cinerea, Pythium debaryanum, with a rare occurrence of Alternaria porri, Phytophthora cryptogea. The greatest destruction was caused by botrytis (Botrytis cinerea). In the first experimental year, 42% of the 1,000 geraniums tested were infected with fungal diseases (30% B. cinerea, 8% P. debaryanum, 4% other fungi). In 2017, fungal infections were detected on 380 geraniums in the 1,000 tested geraniums (290 Botrytis cinerea, 70 Pythium and 20 other fungal diseases). In addition to the use of fungicides, we increased the spatial position of geraniums, early irrigation and frequent ventilation to ensure successful control. By 2017, we were able to reduce the damage caused by pathogens by 4 percent.

87
137
Effects of production factors on the yield and yield component of winter wheat
26-31

The effect of major production factors (forecrop, fertilisation, irrigation, soil cultivation and soil preparation) on the yield components and yield of winter wheat were studied in a long-term  experiment set up at the Látókép Experimental Nursery of the Agricultural Sciences Centre of the University of Debrecen. The results of regression analysis led to the following conclusions:
• In our experiments in 2000, after using maize as a forecrop –based on the results of analysis of regression – fertilisation determined the yield.
• After using pea as a forecrop, a N50 P35 K40 kg/ha fertiliser rate led to an economical increase in the yield of winter wheat.
• None of the determinative yield components varied significantly for winter wheat produced after using pea as a forecrop.
• There is a closed, significant correlation between plant height, spike length, plant and spike mass, the number of spikelets and grains per spike after using maize as forecrop. The thousand grain mass is different from the other yield components, because it is not part of the relation system of
those yield components.
• The increased yield of winter wheat after maize has been used as a forecrop is due to the positive change in grain number per spike yield component.

60
99
Application of advanced environmental assessment methods in orchard management
221-225

Our reseaches were carried out in apple and pear orchards at Farm and Regional Research Institute in Pallag of the University of Debrecen and Pear Gene Reservoir in Újfehértó. Aim of this study is to interpret and analyse field studies with the aim of a GIS based database. Furthermore, beside field measurements, airborne and field hyperspectraldatacollection and analysis were also made to facilitate special watermanagement and irrigation related surveys. The integration of unified, geoinformatics systems with high spatial resolution and calibrated airborne hyperspectral data are appropriate tool for decision support systems, which support the continuous update and actualization of the changing cropping data, the analysis of cropping results in a unified complex data system, the acquiring of agro environmental subsidies, the establishment of monitoring system, and the optimization of irrigated fruit production.

83
125
Mitigation and adaptation measures in the hungarian rural development programme
245-250

In the Hungarian Rural Development Programme (RDP) climate change adaptation is addressed through the measures in Axis 1, 2, 3 and 4. Under Axis 1 farmers can receive support for farm modernisation that will help them adapt to climate change. The processing industry will also be able to use the available resources for capital expenditure on buildings and new equipment. Axis 2 and especially the soil and water package within the agrienvironmental
measure aim to support production methods, which protect soil quality and will help adaptation to climate change. Measures of Axis 3, such as basic services for the economy and rural population, village renewal and development will provide local communities the opportunity to identify actions that can be undertaken to deal with the effects of climate change. On the other hand, the extension of forest resources contributes to climate change mitigation and enhances carbon sequestration. New methods have been elaborated to the sustainable regional water management, irrigation, water regulation, defence against internal water, and soil protection established. Water management contributes to the balance of water quantity on one side, but also to mitigating the climate change on the other.

50
69
Application of the Collision Cell (CCT) in the ICP-MS Analytical System
120-125

Our laboratory has seen a sharp rise in the number of requests for the analysis of smaller and smaller concentrations of elements from foods, plants, soil, organic fertiliser, irrigation and ground water, sewage, sewage sludge, raw material of food, as well as human and animal origin samples. From the above elements the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. Our method of analysis is to use our ICP-MS instrument, together with a ICP-MS with Collision Cell Technology (CCT). The CCT method has better detection limit, with 1-3 magnitudes, compared to the normal ICP-MS analytical method. The CCT has better detection limits mainly for the following elements in the periodical system: analysis of arsenic, selenium, germanium, vanadium and chromium. Additionally a collision cell can be applied for the analysis of silicium, sulphur, zink, copper, iron, calcium, magnesium and potassium in smaller concentrations.

100
121
The influence of channel network silting up at Žitný Ostrov to range of interaction between surface and groundwater
23-31

The movement of water resources, especially the possibilities of their regulation by interaction between surface and groundwaters are the subject matter of attention particularly during the occurrence of extreme hydrologic situation. This work presents the overview of knowledge and results which were achieved at IH SAS in this question. It can show the ways how to optimize the adjudicated processes which emerge during the requirement of emergency intervention. The solution of this task was located at the Žitný Ostrov area because this territory with their existence of channel network is suitable for studying the surface and groundwater interaction. The channel network at Žitný Ostrov was built up for drainage and also to safeguard irrigation water. The water level in the whole channel network system has an effect on groundwater level on the Žitný Ostrov and vice versa. It was been necessary to judge the impact of the channel network silting up by bed silts on the interaction between channel network and groundwater on the Žitný Ostrov. The aim was to evaluate the changes of bed silt state of Žitný Ostrov channel network and consecutively their influence on interaction processes between groundwater and surface water along the channels in the period from 1993 to present. The measurements of bed silt thickness in Žitný ostrov channel network had been started from1993, later they continued at selected profiles of three main channels – channel Gabčíkovo-Topoľníky, Chotárny channel and Komárňanský channel (for checking of the silting up variability). From 2008 the detailed field measurements of cross-section profiles aggradations along these selected three channels have been started. The objective of detailed field measurements was the determination of the silt permeability which is expressed by parameter of saturated hydraulic conductivity. This parameter was determined by two ways – as the saturated hydraulic conductivity obtained from disturbed samples of silt Kp and as the saturated hydraulic conductivity obtained from undisturbed samples of silt Kn. In the first case the granularity of silts was determined as a first step and then was computed their Kp from the empirical formulas according Bayer-Schweiger and Spacek. From undisturbed samples of silts which were extracted along the channels from top, middle and bottom layer of silts, were determined the values Kn by the laboratory falling head method. The valid values Kp on channel Gabčíkovo-Topoľníky ranged from
4,33 10-7 to 4,46.10-5 m s-1, on Chotárny channel from 5.98 10-5 to 2.14 10-6 m s-1 and on Komárňanský channel fluctuated from 1.93 10-6 – 6.09 10-5 m s-1. The valid values Kn on on channel Gabčíkovo-Topoľníky ranged from 5.21 10-8 – 4.18 10-3 m s-1 , on Chotárny channel ranged from 8.54 10-8 – 2.70 10-4 m s-1 and on Komárňanský channel fluctuated from 4.72 10-7 – 1.26 10-5 m s-1. The remarkable results were noticed by comparison of values of saturated hydraulic conductivity from disturbed and undisturbed samples Kp and Kn. On Chotárny channel the values of silt saturated hydraulic conductivity from undisturbed samples Kn approximately hundredfold decreased (from 10-6 to 10-8 m s-1). On Komárňanský channel the comparison of values Kp and Kn shown that the values Kn from undisturbed samples approximately tenfold descended against Kp.

Simultaneously, the bed silts‘ impact on the groundwater recharge (saturated hydraulic conductivity of silt) was also examined. Determination of the total recharge amount was done by numerical simulation (model SKOKY) and by the so-called method of interaction formulas. These two approaches were applied at the Žitný Ostrov channel network. There were field measurements performed in monitored three main channels and adjacent to obtain correct input data. These characteristics were used for simulation and computation of total recharge along the channels. The total recharge amount was calculated for four alternatives of the surface water levels in the channel and the surroundings groundwater respectively. We chose four simplified variants with the same geological conditions in surroundings area of channels, only water levels of groundwater and in channels were modified. The results of the simulations seem to show greater impact of the silt in the case of outflow from the channels to the surroundings than the inflow into the channel from the surroundings.

 

85
89
The possibilities and limitations of organic fruit production
41-45

In this review, direct and indirect technological elements of organic production are discussed. Today, there is a growing interest in production prepared without chemicals. We discuss the following issues: site selection, soil, rootstock and cultivar requirements, plant material, planting distances, crown formation, phytotechical operation, irrigation, soil tillage, soil covering and muchning, nutrition supply. Separate section deals with methods of plant protection.

50
111
Evaluation of critical factors determining the profitability of sweet maize
97-102

The main goal of this analysis was to determine, whether the production of sweet corn competitive is from the point of view of profitability and identify the main factors determining profitability. The hypothesis of this research was that sweet corn production is profitable and output factors (yields, selling prices) affect most significantly the profitability. The total costs of production with irrigation are 560 000 HUF ha-1. Average yield is 18 t ha-1, while selling prices on average of the last 5 years were about 38 000 HUF t-1. The realisable profit in the sector was 248 828 HUF ha-1. Direct cost-related profitability was 48.6% and profit level 26%. Elasticity analysis pointed out that the changes of selling prices and yields affect profitability. The critical value shows the turning point of profitability, which was at the yield of 13.82 t ha-1. It can be concluded, the hypothesis was true, because sweet corn production was profitable compared to other field crops.

100
567
Element Content of Herbaceous Plants in the Floodplain Meadows
55-58

Animals require well-balanced nutrition. The elemental content of the vegetation of meadows is influenced by as many factors such as heat, rainfall, irrigation, soil type and nutrients, meadow types, species, aspects of the vegetation period and cultivation.
Natural meadows used extensively are common sights on river floodplains. Since chemicals are banned and the species number is high, measuring the elemental composition of plants on these meadows is beneficial. Cenological survey and element content measurements were held on the rich flora of four natural meadows in the year 2001.
Weeds, in a wider sense, are plants not directly involved in growing, although their nutritional values make them important costituents of feed. Meadows are enriched by their relatively high microelement content.
On the sampling sites, the ratio deviated from the ideal 2/3 parts monocotyledon and 1/3 part dicotyledon, but this did not mean a Mn deficiency as it would have been assumed.

79
143
Environmental Consequences of Efficient Use of Nitrogen Fertilizers
41-46

Nitrogen fertilizer represents major economic burden. For this reason, although the efficiency of nitrogen utilization varies highly, its actual use generally remains at low levels; these averaging between 25 and 50%. We set up an experiment at the Oradea Research Station, using 15N labeled fertilizers, in order to investigate the possibility of increasing N fertilizer efficiency in winter wheat under irrigation conditions.
Fertilizers labeled with 15N allows us to individually determine its effect on yield formation, as well as the use efficiency of N from fertilizer following application rate and time. The amount of N derived from fertilizer as determined in straw and grain yield is high. When the labeled fertilizer is applied at tillering time, the values of this indicator rise when higher N levels we applied.
In separate experiments, we investigated a series of aspects connected to chemical fertilizer regarding the determination of the type of fertilizer, optimum time and rates of application; all these as a function of the special pedoclimatic conditions.
The results obtained in the field show that the effectiveness of N utilization in wheat is most variable and generally low, often ranging between 25 and 33%, owing to N loss within the system through leaching and NH3 volatilization.
A readily achievable increase in efficiency of 5 percentage points would result in considerable savings, and can be brought about by reducing nitrogen losses. The added benefits to the environment in terms of reduced ground/water contamination and lowered nitrous oxide (N20) emissions would also be substantial.
The figures for N fertilizer use efficiency (% N range from 35.5 to 72.6, the highest value being recorded with an N application of 120 kg/ha at tillering, when the previous crop was sunflower).
INTRODUCTION

56
82
<< < 1 2 3 4