Search

Published After
Published Before

Search Results

  • Connections between land usage, property structure and agricultural enterprises in Hungary
    31-34
    Views:
    158

    The last decade of Hungarian agriculture was marked and changes which affected all parts of agricultural production. This process resulted in a new ownership and organisation structure. The paper presents the effects of the changes in ownership on land use and the various enterprise forms and intends to outline the main tendencies. In general, it can be stated that the role of agriculture in GDP production and employment is decreasing in Hungary, but according to concurrent opinions of experts, agriculture still has and will have a major role in income production and the ease of social tensions in rural areas in the future as well. Hungary’s accession to the European Union provides new chances and new prospects for Hungarian agriculture and rural areas. Hungarian agriculture became a part of the internal market which includes about 450 million people. The safety of marketing became stronger, the rate of financial support is increasing and the income of growers will increase in the future. This process implies more obligations and the keeping of strict regulations. Competition inside the internal market is intensifying, competitiveness will be more important while the chances of development and investment of the growers and the feasibility of more effective land use are increasing. After the accession, integration into the directives formulated in the CAP and the packages of measures accepted in it is framework have growing importance.
    These directives encourage farm-reallocation, namely the rational estate concentration. In general, it can be stated that rational estate concentration, and more effective land use as a consequence, will increase the efficiency of agricultural production.

  • Optimization of inductively coupled plasma mass spectrometer parameter’s to measuring arsenic and selenium
    59-64
    Views:
    629

    In the last decades an increased interest has been evolved about arsenic and selenium. The aim is to understand the environmental, agricultural and biological role of the these elements. In case of arsenic the mayor reasons are the relatively high concentration of arsenic in marine biota (mg kg-1) and the arsenic contaminated drinking waterbases of some Asian countries besides Hungary. The toxicity of higher level selenium content is also known, nevertheless selenium is essential for some biological functions. Considering its esssentiality, in our country the insufficient selenium intake rate couse lack of selenium. Measuring the concentrations of these elements are cruital but not satisfactory information, but the speciation, that is the form of an element presented in a sample is also required. 
    In both cases the most suitable method to determine concentration is the inductively coupled plasma mass spectrimetry. My objective was to optimase the changeable parameters of the ICP-MS for reaching the lowest (the best) detection limit. For this porpuse I have investigated the effect of parameter change on nett signal intensity and relative signal intensity. With the optimased parameter settings the limit of detection for arsenic and selenium were determined, which are 0,032 ng cm-3 for arsenic, and 0,097 ng cm-3 for
    selenium.

  • Leaf protein analyses in order to utilise the leaf shoot of artichoke
    43-47
    Views:
    254

    The constat growth of the Earth’s population brings with itself a higher demand for food and protein not only in human nutrition but also for the feeding of livestock. Currently, the feed industry is mainly built onseed-based protein, wherethebaseplant is soybean, which is large lycovered by imports in Hungary, similar toother European countries. However, the long-term economically sustainable lifestock breeding demandschanges which has also worked out strategies. An alternative protein sources could be green leafy plants.

    In current work the Jerusalem artichokes as an alternative source of protein was studied, compared to alfalfa as a valuable protein plant. Our results indicate that fiber fraction ofJerusalem artichoke shootswas 34 to 37% after pressing in the autumn period while alfalfa slightly lower values were obtained (30%). On the other hand extracted green leaf protein concentration was higher in alfalfa than in Jerusalem artichoke. Along with this higher protein content could be measured from the leaf protein concentration of alfalfa and almost each amino acids were more, as well comparing to Jerusalem artichoke.

    Overall, the alfalfa proved to be advantageous as expected both in leaf protein extraction efficiency, both regarding the content of the protein in the Jerusalem artichoke. However, considering aminoacid composition and green biomass production, Jerusalem artichokecould be a promisingplant species asplant protein sourceinthefuture.

  • The effect of lead and copper heavy metal salts on soil microorganisms under laboratory circumstances
    55-59
    Views:
    299

    he population dynamics of calcareous chernozem soils polluted with different concentrations of lead and copper heavy metal saline solutions was examined.

    The experiment was carried out in the soil biological laboratory of the Institute of Agricultiral Chemistry and Soil Science at DE AGTC MÉK in 2012. For the determination of the concentration of the undiluted stock solutions we multiplied the smallest toxic concentration values of the MSZ 08-1721/1-86 Hungarian standard by forty. The intermediary concentrations of the treatments were produced with adequate dilution of the stock solutions until a dilution level equal to the values of the standard. The statistical evaluation of the data was performed with ANOVA (Analysis of Variance) including the determination of the standard deviation and significant difference. Investigating the effects of the different treatments on the soil microbes we established that both heavy metal saline solutions had a negative effect on the population dynamics of bacteria and microscopic fungi living in the soils. The negative effect of copper – as a potential toxic micro nutrient – turned out to be less strong than the negative effect of the toxic lead. According to our results the correction of the treatment levels is recommended in order to further tolerance examinations and the determination of the tolerance levels.

  • Parameter optimization of an inductively coupled plasma mass spectrometer for measuring arsenic and selenium
    81-85
    Views:
    383

    In the last decades, an increased interest has evolved in arsenic and selenium. The aim is to understand the environmental, agricultural and biological roles of these elements. In the case of arsenic, the major reasons are the relatively high concentration of arsenic in marine biota (mg kg-1) and the arsenic contaminated drinking water bases of some Asian countries, as well as Hungary. The toxicity of higher level selenium content is also known; nevertheless, selenium is essential for several biological functions. Considering its essentialness, in our country, the insufficient selenium intake rate causes a lack of selenium. Measuring the concentrations of these elements provides crucial, but unsatisfactory information, as the speciation, i.e. the form of an element presented in a sample is also required.
    In both cases, the most suitable method to determine concentration is inductively coupled plasma mass spectrometry (ICP-MS). Our objective was to optimize the variable parameters of the ICP-MS to attain the lowest (the best) detection limit. For this purpose, we investigated the effect of parameter change on net signal intensity and relative signal intensity. With the optimized parameter settings, the limits of detection for arsenic and selenium were determined, which are 0,032 ng dm-3 for arsenic, and 0,097 ng dm-3 for selenium. 

  • Sour cherry seed as an industrial gamma tocopherol source
    27-33
    Views:
    300

    In our experiments sour cherry kernels were investigated. The kernels of different sour cherry cultivars were originated from Újfehértói Gyümölcstermesztési Kutató és Szaktanácsadó Nonprofit Közhasznú Kft. Tocopherol profile, oil yields and nutritional value were stood in focus of examinations.

    We started processes preparing of sour cherry kernels. After the preparation recovered non-polar fraction was investigated. We worked with formerly developed chromathographic system, which is capable to separate different tocopherol isomers efficiently. We measured concentration of each tocopherol isomers and registered those and their relation in different oil samples.

    According to received data, alpha-, gamma- and delta-tocopherol appeared in samples, but beta-tocopherol could not be detected. It became clear that level of gamma-tocopherol is far higher than alfa- or gamma-isomer, it is concentration exceeded 1–1.5 mg ml-1.

  • Daily soil carbon dioxide flux under different tillage conditions
    141-144
    Views:
    410

    Over the last few years, warming of the atmospheric layer near Earth's surface is increasingly experienced and researchers have also established that concentration of numerous greenhouse gases have risen over the past two centuries value. Change is basically a legitimate process - considering atmospheric concentration as well - but the change experienced during the past centuries could not have become this critical without the contribution of human activity. Due to the nature of the greenhouse effect, the result of a very fragile, complex process is experienced currently on Earth, which can be significantly unbalanced even by a slight change. Carbon dioxide emitted from the soil is involved in the global cycle and has an impact on the greenhouse effect. The rise in soil respiration may result in the further intensification of warming. In the scope of the present study, it was examined how carbon dioxide emissions of the soil evolve over a day. The results have been established based on the comparison of the effects of different parts of the day, tillage methods and irrigation.

  • Characterisation of a thermotolerant yeast, Kluyveromyces marxianus CBS712
    7-13
    Views:
    319

    Fermentation at high temperature with application of thermotolerant microorganisms is a technological advantage in bioethanol production. Among the yeasts, K. marxianus has outstanding thermotolarance. The industrial application of the IMB3 strain occurs usually at 45C. The final aim of our project is the genetic modification of the K. marxianus CBS712 strain in order to achieve ethanol production at higher temperature than the currently applied. This requires the characterization of the CBS712 strain, with special attention to the determination of the temperature limit of its growth and the amount of the ethanol produced. The temperature limit of growth was 48C in YPD medium. Elevation of the temperature above 45C led to an exponential drop of the cell viability. Ethanol production was tested in shaking flasks, in MYFM medium, under oxigene limited conditions, applying variable concentrations of glucose (12–20%) and different temperatures (45–47 ºC). Preliminary results have revealed that the elevation of glucose concentration increased the amount of ethanol produced. The amount of ethanol (appr. 5%)+ produced at the highest glucose concentration was not different at the tested temperatures (45, 46 and 47 ºC). The observation indicates the potential in raising the thermotolerance of the strain. 

  • Possibility of oil seeds in feeding dairy cows
    67-73
    Views:
    413

    The efforts to modify the fatty acid composition of milk have intensified with health conscious nutrition coming to the forefront.This experiment of ours was designed to investigate to what extent the natural-based feed additives, such as oilseeds, can influence the fatty acid composition of cow’s milk.Further information was gained about feeding of oilseeds in specific amounts to be fitted into the technology of a large-scale dairy farm in practice. The feed supplements were whole, untreated rapeseed and whole, untreated linseed, as part of a total mixed ration. In case of saturated fatty acids when supplementing with whole rapeseed the most significant change was observable in the concentration of the caprylic acid, capric acid, undecylic acid, lauric acid, myristic acid, stearic acid. In case of unsaturated fatty acids the quantity of oleic acid enhanced considerably. When observating the feeding with whole linseed the concentration of many saturated fatty acids lowered (caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid). The quantity of some unsaturated fatty acids was showing a distinct rise after feeding with linseed, this way the oleic acid, α-linolenic acid, conjugated linoleic acid, eicosadienoic acid. The aim of the study was to produce food which meets the changed demands of customers, as well.

  • SIM Samples Investigation by Statistical Methods
    194-197
    Views:
    273

    The assessment of the present condition of the soil is very important, because the accession of the number of the European Union members is in the near future. This can be the base of the modern agrarian environmental management programme. The assessment must be objective, detailed and analyse the processes in the soil.
    Respecting the above causes was decided to create an Environmental Information Monitoring System. This system consists of more parts. One of them is the Soil Information Monitoring System (SIM). This system started to work in 1992.
    This system has two functions. Creating and actuation is obligatory from the international contracts, on the other hand the public SIM has very important role in the conservation of the soil.
    The SIM territorial measuring grid consists of 1236 measuring points. These points are representatives. The distributions of the points by the types of soil attend the variety of the types of soil of the country.
    The investigated elements in 6 types of soil were in our experiment (the group of scandium and the lanthanide series elements). There are 6 elements above the detection limit (Gadolinium, Neodymium, Praseodymium, Scandium, Samarium, Yttrium).
    The Neodymium concentration is 2 times higher than the content of Gadolinium and Yttrium.
    The Neodymium concentration is 4 times higher than the content of Praseodymium, Scandium and Samarium.
    In the case of Dysprosium, Europium, Lutetium, Terbium, Ytterbium the concentrations were below 1 mg/kg.

  • Comparative analysis of sample preparation methods to determine the concentration of arsenic in soil- and plant-samples
    167-170
    Views:
    409

    Arsenic contamination of the fields and groundwater is a global problem. Alföld is the most affected area in Hungary. Irrigation witharsenic contaminated water, and crop production on the contaminated soil can cause a food safety problem, because arsenic is easy taken up by the cell of the plant roots. To prevent this, very important to monitoring the arsenic content of soils and plants. Inductively coupled plasma mass spectrometry (ICP-MS) is a fast, easy method to determined the concentration of minerals in the case of plant and soil samples The analytical methods can give reliable, results if the analytical process, including the sample preparation method, is the best. The objective of this study was to compare 3 type of sample preparation method which was dry ashing, wet digestion in open system, and microwave digestion. As a result of our experiement shows the microwave digestion is the appropriate method to determined the arsenic content of soil samples. In the case of plant samples we can use wet digestion in open system or microwave digestion as a samle preparation method.

  • Spatially Continuous GIS Analysis of Sampling Points Based on Yield and Quality Analysis of Sugar Beet (Beta vulgaris L.)
    56-61
    Views:
    289

    The homogeneity of a study area of 20x20 m used for beetroot production in North-West Hungary was analysed with geo-statistical methods on the basis of measured plant and soil parameters. Based on variogram calculations (Equation 1 and 2), the yield surface showed homogeneity in North-South direction. Considering the results, decrease of sampling distance to 17 m can be suggested. The direction of the variability of yield (Figure 1) could be modelled with a direction variogram based on analysis of the variogram surface. In the study, developed methodological processes are presented for the analysis of spatial relationship between measured production and soil parameters. 5 spatial evaluation methods for yield surface were compared (Table 1). On the basis of the analysed methods, it can be stated that different methods (LP, RBF) should be used when the reasons for locally extreme yields are in focus than in case when the yield surface of the whole area is estimated (IDW, GP). Using adequate parameters the kriging method is applicable for both functions. Similarly to the results of an ordinary Pearson correlation analysis, spatial correlation analysis was shown using soil pH and Cu concentration data. The results of cross variogram analysis (Equation 2) and the North-South direction of the variogram surface showed negative correlation (Figure 3). Based on simulation calculations, decrease of 30% in sampling points resulted in increase of 12% in error for the total sample number considering Cu concentration. The method provides a tool to decrease the cost of sampling and sample analyses of spatially correlating features, and to increase the reliability of spatial estimation using a better sampling strategy with the same sample number.

  • Wheat cleaning and milling technologies to reduce DON toxin contamination
    89-95
    Views:
    599

    Mycotoxicosis caused by Fusarium fungi holds a huge risk considering economic and food safety issues worldwide. By applying milling technologies, we attempted to reduce the concentrates of DON toxin, as it is the most often found toxin in wheat.

    The processes of sieving, aspiration and combination had been used on wheat with high DON toxin concentration. As a next step, grains were sorted using a horizontal cylinder separator, assorted by an optical and a gravity separator, and finally, the products were scoured and ground. The contamination level of the wheat and flour samples were defined by the HPLC-MS method.

    Regarding the results, it can be stated that toxin concentration was most effectively reduced by optical separation and scouring, and by applying these milling techniques, food safety can be increased significantly.

  • Effect of molybdenum treatment on uptake of plant and soil molybdenum content in a field experiment
    117-122
    Views:
    445

    Molybdenum is not a well-known microelement, but being a constituent of several important cellular enzymes it is an essential microelement. Molybdenum occurs in all foods, but at very low levels. There does not appear to be any particular foods or types of foods, which in the absence of extrinsic factors, naturally have high levels of molybdenum. However, environmental pollution, from natural or anthropogenic sources, can lead to high level of the metal in plants.
    Our study is based on the long-term field experiments of Nagyhörcsök, where different levels of soil contamination conditions are simulated. Soil and plant samples were collected from the experiment station to study the behaviour of molybdenum: total concentration, available  concentration, leaching, transformation, uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop. In this work we present the results of maize and peas and the soil samples related to them.
    According to our data molybdenum is leaching from the topsoil at a medium rate and it appears in the deeper layers. In the case of plant samples we found that molybdenum level in the straw is many times higher than that is in the grain, so molybdenum accumulates in the vegetative organs of the plant. The data also show differences in the molybdenum-uptake of cereals and Fabaceae (or Leguminosae).

  • The effect of collecting area on the element content of Hungarian acacia honeys
    129-138
    Views:
    485

    Six macroelements and twelve microelements were identified in thirty-six Hungarian acacia honeys collected from ten counties by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). One-Way ANOVA (LSD and Dunnett T3 test) and linear discriminant analysis (LDA) were used to determine the statistically verified differences among the honey samples with different geographical origin.

    Significant differences were established among the samples from different counties in Na, P, S, Fe, Ni, Cu and Sr concentrations. Based on the macroelement content of honeys, the separation of samples with different geographical origin was not successful because the percent of correctly categorised cases was only 64.9%. However, examining the As, B, Ba, Cu, Fe Mn, Ni and Sr concentration, the separation of different groups was convincing since the percent of correctly classified cases was 97.2%. Thus, the examination of microelement concentration may be able to determine the geographical origin of acacia honeys.

  • Monitoring the oxygen level in the Szarvas-Kákafok Deadarm
    170-173
    Views:
    159

    The water quality of the Szarvas-Békésszentandrás Dead Körös is generally meso-eutrophic, and meso-saprobic. However, particularly
    under higher temperature conditions, the water body may change toward the eutrophic state, even algal blooms could be observed
    previously.
    The present measurements were conducted during a two week period, twice a day. Three water samples were taken horizontally, from
    the surface, bottom and the middle of the water body. The samples were examined in situ. The oxygen content, the temperature, the pH and
    the conductivity were measured by potentiometric methods.
    Increasing pH was detected in correlation to the temperature, which indicated a rising photosynthetic activity. Also, the O2
    concentration showed high variations, especially, when the fresh water supply from the river was stopped, due to a small flood in the river
    Körös.
    These results indicate the increasing eutrophication processes in the deadarm, and the high load and instability of the ecosystem.

  • The importance of selenium in the living world and in the scientific research
    278-286
    Views:
    538

    Presently, selenium (Se) is one of the most investigated microelements. It has an important proven role in many vital processes. Directly or indirectly, selenium deficiency can play a role in the development of many diseases. On the other hand, the concentration range in which selenium is essential is narrow; there is a narrow gap between necessary and toxic content in dietary intake. In this context, selenium contamination poses a further health risk for people if they live near the industrial areas and mining activity.
    In this paper, we comprehensively introduce the very important trace element selenium. We studied the base parameters, deposit, analytic and deficiencies, problem of contamination and also the solution of contamination problems of selenium.

  • Contexts between apple orchards with various cultivar comparisons and the effect of ATS (ammoniumthiosulphate) on fruit thinning
    35-38
    Views:
    222

    Our research focuses on a fruit thinning material that can also be used in apple production. This material reduces significantly the required manual labor of hand thinning by russeting the blossoms selectively. The ATS (ammonium-thiosulphate) acts as chemical desiccant contrary to the nowadays commonly used materials such as naphthalene acetic acid, naphthyl acetamide, benziladenin and ethylene, which affect the metabolic processes of the plant by regulating the hormone system. In our experimentals cultivar ’Pinova’ and ’Golden Reinders’ were treated with different concentrations of ATS. The effect of these doses on the fruit setting and the quality and quantity parameters of the fruits was studied. According to our results, in the case of cultivar ’Pinova’ the ATS did not have any detected effects at the concentration of 1.5%. Application of ATS at 3% decreased considerably the fruit setting and fruit yield, accordingly the mean fruit size improved. The response to treatment in the case cultivar ‘Golden Reinders’ does not have any similar consistent results.

  • Spatial Relationships Between pH and Vegetation Pattern in an Area Contaminated with Heavy Metals
    140-143
    Views:
    336

    It is not possible to gain information on the risk factor representing the bioavailability and the mobility of the contaminants only on the basis of their total concentrations. Especially, in case of heavy metals, which can be charaterised with very different chemical forms and their mobil and mobilizable parts are determined by complex balances highly sensitive to the changing environmental conditions. Considering mine tailings, however, the toxic elements are basically in ore forms having low adsorption capacity, thus the heavy metal ion concentration in solution is governed mainly by the pH conditions. In Gyöngyösoroszi, the spatial distribution of the total heavy metal concentrations as well as that of pH values determining the bioavailable part of the toxic elements were estimated and by mapping the vegetation pattern, relationship was analysed among the total Zn, Cu, Pb and As concentrations, the pH and the species present. Results show that the presence of the certain plant species is highly determined by the pH on the mine tailing material, the highest vegetation density was found where the bioavailability of the toxic elements were considered the smallest as a result of the neutral pH. As a result, high diversity could be found even in places where the total zinc, copper, lead and arsenic concentrations were extreme. In addition, plant species could be identified, which are tolerant to toxic elements and present even if the pH is low and the bioavailable part of the heavy metals is relatively high.

  • Complex problem analysis of the Hungarian milk product chain
    43-47
    Views:
    182

    Hungarian dairy sector went through significant changes in past two decades. The most significant changes were caused by our accession to the European Union. In Hungary milk production remarkably declined after EU accession. The size of our dairy herd has been practically reducing since the political transformation, but increasing yields per cow could compensate it in some way and for some time. However, in recent years, increasing yield per cow came to a stop and in parallel, the number of cows declined further and faster. Low prices, high production costs and tightening quality requirements ousted several producers from the market in past years. Feeding cost represents the highest rate in cost structure of production, but animal health expenditures and various losses are also significant. There are undeniably competitive disadvantages in the level of organisation and labour productivity; however competitiveness already depends on cost effectiveness in the medium run. In Hungary concentration of the dairies is relatively strong in spite of the relative high number of corporations. The dairies compete with each other and with the export market for the raw material and the better exploitation of their capacities. Applied technology of the Hungarian dairies lags behind the Western-European competitors’; in addition they have handicaps in efficiency and product innovation. Presence of chain of stores being dominant in sale of milk products does also not favour in all respects to the position of the dairies. The aforementioned retail chains are namely consumer-centric, engage in price follower conduct and weaken the position of the dairies with their private label products. As a result of increasing import of milk and milk products Hungary became a net importer in recent years. Today, disposable income still essentially determines the consumption habits of price-sensitive consumers. Loyalty for Hungarian products is not typical, consumers are open for import products being preferred by retail chains. In addition Hungarian milk and milk product consumption is about half of the Union average and it is far behind the level being necessary for healthy eating. In Hungary lack of competitiveness and vertical integration relationships and backwardness are revealing among the dairy farmers and the dairies, while chain of stores are in unprecedented “monopolistic situation”; the whole sector can be characterised by defencelessness. 

  • Harnessing diversity in durum wheat (Triticum turgidum L.) to enhance climate resilience and micronutrient concentration through genetic and agronomic biofortification
    9-20
    Views:
    422

    Huge consumption of wheat-driven food products with low bioavailability and small concentrations of zinc is responsible for zinc-induced malnutrition and associated health complications. The contemporary durum wheat varieties have inherently tiny zinc concentrations in developing grain, which cannot meet the daily human zinc demand. Despite the fact that over two billion people are suffering from iron and zinc-induced malnutrition, various intervention measures have been deployed to reverse the effect of zinc-induced malnutrition on humans. There are evidences that agronomic and genetic biofortification approaches can increase grain yield and nutritional quality (i.e. zinc, iron, protein, and vitamins) of durum wheat to a greater extent. However, there is a lack of direct empirical evidence for which the influence of both biofortification approaches on improving human health. Application of micronutrient-containing fertilizers either in the soil or foliarly is effective in combination with NPK, organic fertilizers coupled with efficient durum wheat varieties, emphasizing the need for integrated soil fertility management (ISFM). Although genetic biofortification is a cost-effective and sustainable approach, agronomic biofortification provides an immediate and effective route to enhancing micronutrient concentrations in durum wheat grain. The application of zinc-containing fertilizers is more effective under drought conditions than in normal growing situations. Hence, this article provides a key information for agronomists and breeders about the potential of biofortification interventions to improve durum wheat yield and enrich the grain qualitative traits to ensure food and nutritional security of the ever-increasing world population.

  • Usability of vegetable extracts in the protection against Alternaria alternata
    113-116
    Views:
    210

    In our country, wormwood ragweed (Ambrosia artemisiifolia) may cause serious problems. Nearly 5 million hectares of agricultural area was infected with ragweed (Ambrosia artemisiifolia), which is believed useless weed. Allergological point of view, most problematic weeds adventive. However, many physiologically very beneficial compound also included, those with the effects have been known also by the Indians. On this basis, herbs can be thought of as ragweed. Our goal was to present that the ragweed contains antifungal active substances as well. In this paper we tested the biological activity of the extracts against Alternaria alternata F.00750 in vitro. We related based on our examination that ragweed contains biologically active agents, by which it is hampered the reproduction of the Alternaria alternata. The minimum effective concentration was 300 mg extract in a Petri dish, which was three days inhibited the growth of fungus. Full fungicidal effect was observed over dose 525 mg.

  • Macro element contents of different genotype cows’ milk
    27-31
    Views:
    407

    The level of mineral elements is important factor regarding the quality of milk. The aim of our research study was to determine the content of mineral elements in milk of Holstein, Jersey, Brown Swiss, Ayrshire, Norwegian-red, Swedish-red cows in the first stage of lactation. All cows were fed with the same type (composition) of feed and they were kept under the same condition. The concentration of macroelements (K, Na, Ca, P, Mg, S) in digested milk samples was determined by inductively coupled plasma optical emission spectrometry (ICP-OES).

  • Selenium speciation analysis of selenium-enriched food sprouts
    23-28
    Views:
    450

    In this present study, we prepared selenium-enriched pea and wheat sprouts. During our research we aimed not only to measure the total selenium content of the sprouts but to identify different selenium species.

    Scientifical researches show why the analytical examination of different selenium (Se) species is necessary: consumption of all kind of Se-species is useful for a person who suffers in selenium deficit, while there is significant difference between effects of different Se-species on person, in whose body the Se-level is just satisfactory. Biological availability, capitalization, accumulation, toxicity of Se-species are different, but the main difference was manifested in the anti-cancer effect of selenium.

    During our research selenium was used in form of sodium selenite and sodium selenate, the concentration of the solutions used for germination was 10 mg dm-3. Control treatment meant germination in distilled water. Total selenium content of sprout samples was measured after microwave digestion by inductively coupled plasma mass spectrometry (ICP-MS). Different extraction solvents were applied during sample preparation in order to separate different Se-species (0.1 M and 0.2 M HCl or 10 mM citric acid buffer). We wanted the following question to be answered: Which extraction solvent resulted the best extraction efficiency? Selenium speciation analysis of sprout sample extracts was performed by high performance liquid chromatography with anion exchange column, detection of selenium species was performed by ICP-MS.

    Evaluating our experimental results we have been found that significant amount of selenium of inorganic forms used during germination transformed into organic selenium compounds. There was difference between the amount of Se-species in pea and wheat sprouts and selenium uptake and repartition of selenium species were depended on Se-form used during germination. In addition the chromatogram analysis made us clear as well, that the citric acid solvent proved to be the most effective extraction solvent during sample preparation int he view of organic Se species.

  • The Effect of Smut Gall Tumour Infection on Iron and Zinc Uptake and Distribution in Maize Seedlings
    27-32
    Views:
    182

    The amounts of Fe, and Zn were measured in maize seedlings infected by smut gall tumour (Ustilago maydis Dc. Cda.) and in healthy seedlings five days after infection. The amount of elements was also measured under different stress intensities. Due to the infection, as a biotic stress, the amount and distribution of examined elements have been changed. On the bases of the differences in the Fe distribution between the symptoms less and tumorial leaf parts, we have come to the conclusion that the infection also effects the mobilisation of Fe and Zn inside the plants. The Fe uptake was much higher in the infected plants and the tumour development also had an effect on the uptake and distribution of the examined elements. The experiments of infecting maize seedlings by monosporidial strain of crown gall tumour showed no tumour development. We found that the monosporidial strain also acts as a biotic stress and has an effect of iron and zinc distribution. We observed a slight difference in the iron and zinc contents in the roots of corn seedlings infected by different monosporidial sporidium concentrations, while the iron and zinc contents in the shoots were increased by the intensity of the infection. The roots do not form tumours. There is no difference between the roots of the infected and healthy corn seedlings. Since the Fe and Zn contents of the shoots of infected plants depend on the intensity of the infection, we have come to the conclusion that there must exist a „special” communication system regulating the transportation of the examined elements.
    In the experiments with infected maize seedlings, it became necessary to get the iron chlorosis before the disease reaches the lethal phase. Although most of the iron reserves are located in the embryo, to accelerate the chlorosis, the endosperm was removed, and it was observed, that the iron chlorosis appears later in maize seedlings when the endosperm is removed. The relative chlorophyll content of the first and second leaves was measured in iron efficient and iron deficient maize seedlings at different times.
    The higher IAA content of tumorial plant tissues is already known. The treatment with IAA decreases the iron concentration in the shoots and in the roots of +Fe precultured plants and increases at -Fe precultured ones. The TIBA retards the shoot-to-root transport of IAA. When the seedlings were treated simultaneously with IAA and TIBA, higher iron concentrations were observed in the shoots and in the roots of corn seedlings.
    We found extremely high iron concentrations in the roots of infected seedlings and, in line with this, serious damage to the roots was observed that this can be caused by the high iron content generated free radicals. The results demonstrate that IAA has a role in the shoot to root communication.