Search

Published After
Published Before

Search Results

  • Comparison of the physiological responses of an oil-pumpkin cultivar and hybrid under different nitrogen supply conditions
    65-69
    Views:
    177

    Cucurbita pepo var. styriaca is known as a medicinal crop among other cucurbits. The benefits of cucurbits fruits are very important in terms of human health, purification of blood, removal of constipation, digestion and supplying energy. The mutant styrian oil-pumpkin (Cucurbita pepo L. convar. Pepo var. styriaca Greb.) exposes a complete lack of lignification of the seed testa. For this reason, this kind of naked pumpkin seed is more consumable as snack than other seeds. The vegetative growth of plants is crucial for fruit production. Nitrogen is the most imperative element for the proper vegetative growth and development of plants which significantly increases and enhances yield and its quality by playing a vital role in the biochemical and physiological functions of plants.

    Field studies were conducted to study the effect of nitrogen nutrition on certain physiological parameters and their differences between the styrian oil pumpkin hybrid and cultivar (Gleisdorfi Classic cultivar and GL Rustical hybrid). The small block experiment was carried out based on a factorial experiment with a completely randomised block design and four replications in the Research Institute of Nyíregyháza during the summer period of 2017 and 2018. Three different concentrations of nitrogen fertiliser was applied at sowing. Photosynthetic pigments (chlorophyll-a, -b and carotenoids) were analysed as one of the basic factor of efficient photosynthesis. The yields of two genotypes were also measured in all treatments as seed-weight. The contents of photosynthetic pigments were higher in the oil-pumpkin hybrid, mainly the carotenoids in 2018. The vegetation period of 2018 was drier than in 2017, the hybrid oil-pupmkin was more efficient in stress tolerance than the cultivar with higher carotenoids pool. The obtained yield was more pronounced in the oil-pumpkin hybrid than the cultivar in all examined years. The hybrid GL Rustical was more sensitive to nitrogen treatment than the cultivar Gleisdorfi Classic.

  • HPLC-MS analysis of the active ingredients of chamomile (Matricaria chamomilla) bee feeding syrup
    61-65
    Views:
    244

    Apiarists let prepare by bee honey products containing medicinal drugs. Our aim was to prove that the active ingredients originated from the herbs are also present in the bee products. This publication focuses only to the chamomile (Matricaria chamomilla) containing feeding syrup and the difference between the various syrup phases. To fulfil this task, we developed a method analysing the non-volatile components of the syrup using the flowers of chamomile. The method involves a filtration followed by HPLC-MS analysis. The analyses and the data evaluations proved that the non-volatile components of the herb were transferred to syrup. As the characteristic components of certain herbs could be identified also in the syrup, it is obvious that the components responsible for the medicinal effects are also transferred.

  • Mitochondrial DNA-based diversity study of Hungarian brown hares (Lepus europaeus Pallas 1778)
    23-29
    Views:
    131

    The brown hare being an important game species which is widespread across the European continent has been in focus of many population genetic studies. However only a few comprising researches can be found on the diversity of Central-European populations.

    The aim of our large scale long term ongoing study is to fill this gap of information on the species by describing the genetic history and structure of the brown hare populations of the area using both mitochondrial DNA markers and genomic skin and hair colour regulating genes.

    This article gives forth a part of our results concerning the mitochondrial DNA diversity of Hungarian brown hares based on amplification of a 512 bp long D-loop sequence. N=39 tissue or hair samples have been collected from 15 sampling sites on the Hungarian Great Plain. We have described a high level of haplotype diversity (Hd=0.879±0.044) based on a 410 bp alignment of our sequences. We have found 17 haplotypes within our sample set with the nucleotid diversity of π=0.01167±0.0022. Our ongoing research shows high genetic diversity for the brown hare in the studied region and a second alignment with 156 sequences downloaded from GenBank indicates a geographic pattern of haplotypes among the studied populations though these results need confirmation by our further analyses.

  • Effect of allithiamine on the level of hyperglycaemia-induced advanced glycation end products
    41-44
    Views:
    233

    Diabetes mellitus is a rapidly growing public health burden in both developed and developing countries. Diabetes mellitus is accompanied by hyperglycaemia, which can cause tissue injury by several mechanisms. One of these is the formation of advanced glycation end-products (AGEs). In this study, the effect of allithaimine, a fat-soluble thiamine derivative, was investigated on hyperglycaemia-induced AGEs levels using human umbilical cord vein endothelial cells (HUVECs) as a hyperglycaemic model. HUVECs were isolated by enzymatic digestion, characterized by flow cytometer and treated 30 mM glucose plus allithaimine or thiamine or cell maintenance medium as control.  Allithiamine was synthesized and purified. The structure of the synthesized and isolated compound was verified by reverse phase HPLC and MALDI-TOF. AGEs were evaluated by ELISA. Collectively, our results indicate that allithiamine can reduce level of the hyperglycaemia-induced AGEs similar to thiamine.

  • Impact of chronic heat stress on digestibility of nutrients and performance of meat type ducks
    51-55
    Views:
    188

    The aim of the study is to determine the effect of vitamin and mineral supplement under permanently high environmental temperature (30±1 °C) on the digestibility of nutrients, performance and furthermore the composition of duck meat in the growing period. A total of four hundred mixed sex 14 days old Cherry Valley type hybrid ducks were used for the study. Two experimental diets were formulated in the study (control and vitamin E, C and zinc supplemented diet). Based on the results the following conclusions were drown: the antioxidant defence system plays an important role in the reduction of heat stress generated lipid peroxidation process. Feed additives which have direct or indirect antioxidant effects can reduce the negative effects of heat stress on the ducks performance and meat composition. Digestibility of nutrients (Dry Matter, Crude Protein, Crude Fat) was not affected by antioxidant supplementation under chronic heat stress (30±1 °C). The performance was affected significantly by Vitamin C and E and zinc supplementation under heat stress (P<0.05). In the treated group the daily weight gain (dWG) increased and the feed conversion ratio (FCR) was improved significantly (P<0.05). The energy and protein conversion was decreased also significantly (P<0.05).

  • Survival analysis of sow longevity and lifetime reproductive performance – Review
    75-80
    Views:
    256

    Sow longevity plays an important role in economically efficient piglet production. Improving sow longevity results increase in the productivity and profitability of a sow herd. Longevity is a complex trait with many factors that can contribute to a sow having a long and productive life. Not only the sow’s genetics, but also nutrition, environment and the management policies are important. In addition, the removal of non-productive sows along with the introduction of replacement gilts is an essential part of maintaining herd productivity at a constantly high level. The objective of this paper was to summarize the current knowledge about the sow longevity and lifetime performance values, as well as, discusses the survival analysis methods for sow longevity traits. This method can estimate the hazard rate indicating proportional risk of sows being culled at any given time, in addition, it is able to investigate the effects of different factors on longevity. Identifying factors that influence the longevity could assist many commercial pig producers in becoming more efficient.

  • Effect of genotype on the hematological parameter of TETRA-SL and Hungarian Partridge coloured chickens at young age
    99-104
    Views:
    184

    Indigenous chickens are well known for their dual-purpose function and palatable meat. However, the information on their hematology parameters is lacking and hence hampering the poultry industry production of local breeds. The main objective of this study was to examine the hematological parameters of Hungarian Partridge Coloured hen (HPC) and TETRA-SL (TSL) genotype and determine the hematological reference interval values. This trial was part of the larger experiment where a total of 200 chicks (HPC + TSL) were reared. For this trial the blood samples were obtained from brachial wing veins of 8 chicks of each genotype for blood hematological analysis. The results indicated that some of the hematological parameters such as red blood cells-RBC, white blood cells-WBC, hemoglobin-Hb, hematocrit-Ht, platelets-Plt, lymphocytes-LYM, and granulocytes-GRAN were significantly affected by the genotypes (p < 0.05). The genotype did not affect the mean corpuscular volume-MCV, mean corpuscular hemoglobin-MCH, mean corpuscular hemoglobin concentration-MCHC, and GRAN (p > 0.05). The hematological reference interval values were slightly higher in the TSL genotype compared to HPC chicks. It is concluded that genotype has a significant effect on the hematological parameters. The results from this trial will be help and design the baseline reference values for the HPC genotype which will be useful in assessing the health status of these indigenous chickens.

  • Comparision of growth of mature all-female and mixed-sex Common carp (Cyprinus carpio L.) stocks in RAS
    65-68
    Views:
    453

    The common carp (Cyprinus carpio L.) is the most important fish species in Hungary, it is more than 70% of the total Hungarian fish production. The common carp production is important not only just in Hungary but in Middle-East Europe, as well as Southeast Asia. Majority of the production comes from fishpond culture. If the production sector wants to meet the increasing customer demands, there is need to intensify research on the intensive fish production opportunities for example all-female common carp technologies. The all-female technology is one of a genom-manipulation technology. Its production showed better growth rate than mixed-sex population in pond culture. Our experiment combined the recirculation aquaculture system (RAS) and the all-female common carp stocks intensification technologies. The reason for the experiment, is that there are no result about the growth of all-female common carp growth in RAS.

    The experiment used the „Tatai grey scale type” common carp stocks. We propagated two all-female stocks (T2 and T3) and a control group (TK). Due to technological characteristics of RAS, the water quality parameters were the same for all treatments and corresponded to the technological tolerance of common carp.

    The experimental period was from July 10, 2019 – November 20, 2019. Result of growth performance showed that the growth of mixed-sex stock was significantly higher than all-female stocks; (Control=3692.0±590.5g, T2=3438.8±415.4g, T3=3294.1±659.1g). Feed conversation ratio (Control=1.3±0.1 T2=1.5±0.2 T3=1.6±0.5) and SGR% (Control=0.8±0.0 T2=0.7±0.1 T3=0.7±0.1) were similar.

    By the results it can be said the all-female common carp technology has neither advantages nor disadvantages compared to the mixed-sex stock. The all-female technology can be beneficial if the consumers need female common carps. It is worth continuing the experiment and examine how the stocks will perform above 3kg body weight.

  • Use of molecular marker methods in the classification of bamboo taxa: A review
    51-59
    Views:
    161

    Bamboo plants are currently attractive to researchers because of their versatile uses. Understanding the bamboos’ genetic level is needed to develop new varieties. Taxonomic identification is the basis for plant development. Bamboos were identified as their taxonomical morphological characters which are dependent on environmental factors. Molecular Marker techniques can be used to perform accurate genotype identification, which can be used for genetic diversity analyses. The RFLP, RAPD, AFLP, SSR, ISSR, iPBS, SCARS, SCoT, SRAP marker systems have been shown to be able to efficiently determine the genetic diversity of bamboo species based on genotyping. This paper summarizes research that aims to analyze the genetic diversity of bamboo species on a molecular basis.

  • Insect base-protein: A new opportunity in animal nutrition
    129-138
    Views:
    466

    The consumption of insect protein, as well as its use in animal feeding, has become a trend. This trend is particularly receiving a lot of attention in animal nutrition because the current protein source of the highest quality in animal feeding which is fishmeal is unsustainable, expensive and its demand is higher than supply. Insect protein can be of great potential in combating world hunger as the world population continues to increase. The potential of insect protein is wide-ranging, it could improve the economics of feed production, lead to cleaner production due to its low environmental footprint.

    This review focuses on the need, (nutritional and environmental) advantages of insect protein in feed production, as well as previous research findings.

    The unanimous conclusion of the reviewed papers is that insect protein has a great potential in feed production in terms of nutritional value, environmental implication, sustainability as well as economic implication.

    However, there is a need for the intensification of research on this alternative protein source in Europe, especially in aquaculture due to the approval of 7 insect species in aquafeeds by the European Union. Another reason for the intensification is that there is still much to be done as a result of past research which shows that growth effects vary based on species and inclusion level.

     

  • Heat stress of cattle from embryonic phase until culling
    11-22
    Views:
    255

    Heat stress becomes a serious problem in the livestock sector as it affects cows' performance negatively. The objective of this paper review is to investigate the effects of heat stress during the different phases of the life cycle of cows; embryos, calves, heifers, and cows. Heat stress during early maternal gestation affects the ability of embryos to develop increasing the risk of abortion and early embryonic death. Heat stress during late maternal gestation affects the performance of calves and heifers later in their life, as it reduces growth performance, conducts physiological changes, impaired immunity, changes the behavior, and reduces the length and intensity of the estrus in heifers with decreasing in milk production in the first lactation. On the level of cows, milk quality and production, meat quality, and the final body weight decrease under hot temperatures. Heat stress decreases the conception rate, alters follicle growth, and estrous symptoms. Hormones secretion and physiological changes because of the heat stress conduct to impair the immunity system, and in oxidative stress and death in some cases. Same as for calves and heifers a change in the behavior of cows was detected in order to decrease their temperature.

  • Examination of the interval between litters (IBL) of different genotype HLW sows using survival analysis
    13-17
    Views:
    158

    In this study our aim was to find out if there is a difference between the genotypes determined for the previously identified mutations of seven genes of the Hungarian Large White in terms of the time spent in production. We identified the previously determined alleles of the seven genes (BF, EGF, ESR, FSHβ, H2AFZ, LEP, PRLR) related to proliferation that were and performed the survival analysis between breeds indicating the risk of culling and the time spent in production on the given farm. Based on the results of survival analysis by Log-rank test, Breslow (Generalized Wilcoxon) and Tarone-Ware test we concluded that they indicated a significant difference in case of the genes BF (Breslow and Tarone-Ware tests) the EGF (Log-rank and Tarone-Ware tests) and ESR (Log rank test) based on which the curves of the survival of the certain genes varied form one another significantly.

  • Evaluation of the correlation between SPAD readings and absolute chlorophyll content of maize under different nitrogen supply conditions
    121-126
    Views:
    328

    Currently, one of the most important objectives of agriculture is to maintain the principles of the sustainability. The use of precision technologies in agriculture belongs to this topic. The use of precision technologies is increasingly widespread in the cultivation of various agricultural crops, including maize. Sensing is an important part of these techniques. In our experiment we compared two methods: measuring relative chlorophyll content and the method of determine the extractable chlorophylls. The experimental plant was maize (Zea mays L.) and the measurements were performed at an early development stage (V8) of three genotypes. Three levels of nitrogen (0; 80; 160 kg ha-1) were applied during the experiment. The relative chlorophyll content was measured by SPAD-502 (Minolta, Japan) and a handheld GreenSeeker (Trimble, USA) device. The extractable total chlorophyll content decreased in parallel with the increased nitrogen level. The obtained SPAD values were diversified furthermore the NDVI values have not been changed for the effect of different nitrogen fertilization. In the early stages of development of maize, these parameters need to be complemented with other measurements to provide reliable information about the crops nitrogen status.

  • Development opportunities of biomass-based ethanol production in relation to starch- and cellulosebased bioethanol production
    71-75
    Views:
    112

    The biomass is such a row material that is available in large quantities and it can be utilizied by the biotechnology in the future. Nowadays the technology which can process ligno cellulose and break down into fermentable sugars is being researched. One possible field of use of biomass is the liquid fuel production such as ethanol production. Based on the literary life cycle analysis, I compared the starch-based (first generation) to cellulose-based (second generation) bioethanol production in my study considering into account various environmental factors (land use, raw material production, energy balance). After my examination I came to the conclusion that the use of bioethanol, independent of its production technology, is favorable from environmental point of view but the application of second generation bioethanol has greater environmentally benefits.

  • Effect of anthocyanin-rich sour cherry extract on the level of IL-8 in LPS-induced endothelial cell
    27-30
    Views:
    196

    The anthocyanin content of the Hungarian sour cherry is remarkable. Nutraceutical and pharmaceutical effects of the anthocyanins and their role in disease prevention have been studied extensively. Endothelial cells are involved in the pathogenesis of several inflammatory diseases. The objective of this work was to investigate pure sour cherry extract on human umbilical cord vein endothelial cells (HUVECs) as an inflammatory model.  HUVECs were treated with 100 ng/mL lipopolysaccharide (LPS) and 50 mg/mL sour cherry extract or M199 medium as control. The optimal concentration range of the sour cherry extract was investigated and selected based on MTT assay measuring the conversion of the tetrazolium salt to formazan by mitochondrial dehydrogenases. The level of interleukine-8 (IL-8), a pro-inflammatory cytokine, was measured in Luminex MagPlex assay. LPS treatment significantly increased the secretion of IL-8. The pure sour cherry extract was able to attenuate this increment indicating the potent anti-inflammatory effect of pure sour cherry extract. Our results emphasize that pure sour cherry extract could reduce the LPS-induced inflammatory response thereby may improve endothelial dysfunction.

  • Physical and chemical treatment of poultry feather from the slaughter-house
    51-56
    Views:
    66

    The 15-20% of the by-products of meat – and poultry industry – that unsuitable for human consumption – contains keratin. The slaughter technology of poultry produces large amount of poultry feather with 50-70% moisture content. This means more million tons annually worldwide (Williams et al., 1991; Hegedűs et al., 1998). The keratin content of feather can be difficulty digested, so physical, chemical and/or biological pretreatment is needed in practice, which has to be set according to the utilization method.
    Our applied treatments were based on biogas production, which is a possible utilization method. In the IFA (TULLN) Environmental Biotechnology Institute the feather was homogenized, and – according to the previous examinations – the most effective 1:2 feather-distilled water ratio or 1% NaOH-solution was used, and then treated with microwave (70, 130, 160 °C) during 1 hour time period. DM% and oDM% content was analyzed in the original samples, and the pH, Carbon-, Nitrogen-content in the output, too. Based on the received correlation coefficients (R) and related significance values (Sig.) I concluded, that the C-, N-content and the pH values weren’t influenced by any of the additives. The temperature
    affected all three tested factors. The temperature showed a strong coherency with the N-content and the pH value when distilled water was used and weak-medium coherency with the Carboncontent. With NaOH-solution treatment the temperature gave strong coherency with the C- and N-content, as well as medium coherency with the pH. Our objective was to determine the method with effectively the pre-treating of poultry feather for biogas production or composting and to prepare of the treated samples for N and C analyzing. Our next aims will be the elaboration of the technological parameters of heat pre-treatment and microbial digestion of poultry feather for biogas production. 

  • ‘Kindergarten’ keeping-system in farrowing house: effect the socialization of piglets on weight performances, fecal cortisol metabolite level and post-weaning behavior
    167-174
    Views:
    151

    This study aimed to examine whether litters’ let-together system before weaning (‘kindergarten-system’) has any stress effect and effect on post-weaning behavior, respectively. One week before weaning piglets were socialized by removing four adjacent farrowing crate walls. After weaning, piglets from the same experimental groups were housed in the same rearing crates. The piglet’s body weight was measured at birth than weekly till the 7th life-week. Fecal cortisol metabolites were measured for evaluation of the adrenocortical activity. Personal observation and evaluation were carried out for behavioral analyses after weaning. There were no significant differences in weight development and cortisol metabolite levels between the control and experimental groups. Behavioral analysis showed that pigs grow up in a socialized system, rapidly evolve ranking in the rearing crates, and the self-maintenance and social behavior were more pronounced. In control groups, the activity involving movement (exploring, walking, and running) was much more decisive. Recent work suggested the beneficial effect of the ‘kindergarten’ system in the farrowing house in animal welfare aspects.

  • Micropropagation of Leuce-poplar clones and its role in selection breeding
    43-48
    Views:
    149
    Leuce-poplars (mostly white poplar and its natural hybrid grey poplar) are native tree species trough Hungary. They are covering more than 4.0 per cent of the Hungarian forested area (77 000 ha). The white (grey) poplars play a significant role in the forestation under sandy soil site conditions as well as they are of importance from nature conservation point of view as well.
    Long-term selection breeding work is going on at the National Agricultural Research and Innovation Centre Forest Research Institute (NARIC FRI), involving selection of fast-growing Leuce-poplar clones under dry site conditions.
    Micropropagation technology is relatively quickly spreading in forestry. In vitro multiplication of trees is applied mainly in fruit growing in Hungary, in case of forestry it is used mainly for selection breeding.
    This paper presents a short overview on the micropropagation trials with different Leuce-poplar clones and the early evaluation of the seedlings growing of the micropropagated clones/varieties.
  • Food problem and its solution
    19-23
    Views:
    111
    The Globalization processes substantially changed relations between countries. One of main factors of these processes is forming in ХХ century of Worldwide auction organization, which activity provided with swift growth of volumes in trade of food commodities. Thus, the solution for global food problem was found. At the end of the second half of ХХ century the production volumes of agrarian goods in countries with a different level of economic development grew considerably. However, a food crisis 2007–2008 led to the necessity to define factors, which would allow to grow production, converting an agrarian sector into sustainable growing industry, passing ahead the increase of quantity of population.
  • Energy production systems of phototroph microorganisms (classification of photobioreactors)
    35-39
    Views:
    58

    In the field of alternative energy sources there is an argue in the comparison of its effects on the benefits and disadvantages to the economics and the environment. New studies are born which are in contradiction with each other. The demand for bioenergy feedstock is growing rapidly however there are the environmental problems caused by the extending energy crop plantations. There is such a significant need for land to grow traditional energy crops on (rape, soy, palm-oil, sugarcane, etc.) that the food purpose agricultural capacity could be in danger. Probably the extensively
    growing energy crops play a role in the very high prices of food. In some countries like China for example laws prohibit the use of food based crops such as corn for energie production. In the case of corn based ethanol production the cost only for the feedstock itself is over 60% of the whole preparation costs which significantly effects the entire economy of the energy productions process.
    The microalgaes however have a huge biotechnological potential and their production is notably cheaper then the traditionaly grown food crops growing expenses. They play a significant role as feedstocks in todays industrial production in such fields as comestible production, cosmetics, pharmaceutics and biotechnology especially in biofule production. In the field of economy the major aspects here are also the technological designs
    and the construction. For the future industrial production the closed type systems seem to have more advantages compared to the open, pond-type systems. For high value material production the more innovative and more easily developed closed photobioreactors are the profitable regardless the vast techological designs used in the construction. 

  • A simple method for preparing elemental selenium nano- coating inside a silicone surface
    35-43
    Views:
    209

    Selenium nanoparticles (SeNPs) with a bright red colour have aroused worldwide attention due to their unique properties in selenium supplementation because of their low toxicity and favourable bioavailability. A simple method was developed for making a red selenium nanolayer on the inner surface of Polyvinyl chloride (PVC) and silicone tube. The selenium nanoparticles were produced by the reaction of sodium selenite and ascorbic acid. Red amorphous selenium nanoparticles have been successfully synthesized by the reaction of 500 mg dm-3 Se (sodium selenite) solution with 10 g dm-3 ascorbic acid solution at room temperature, and morphology was confirmed by X-ray diffraction analysis (XRD). The coating density was compared on PVC and silicone surfaces by using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray (EDS) analysis. The nanolayer with about 16 µm thickness on the silicone surface significantly evenly distributed compared to the PVC surface. The selenium coated silicone tube could be a good source of selenium for a continuous, low-level selenium supplementation of farm animals via drinking water.

  • Effect of noninvasive castration method on weight gain, behavior and meat quality of ram lambs
    21-29
    Views:
    131

    In the course of producing heavyweight lambs (above 35 kg), males need to be separated from females at the end of the fattening period.  If not, the rams must be castrated because they reach sexual maturity, and their activity bothers the ewes or unwanted pregnancy may occur. The present study surveys if the Hungarian sheep keepers know or use the non-surgical elastrator method for castration and assess the effect of castration (surgical and non-surgical) on daily weight gain, behavior, moving activity, and meat quality of rams, respectively. We found many advantages regarding the use of the elastrator method. Based on the survey results, 100% of farmers who used elastrator had a positive experience and favorable opinion about this method. There is no need to separate the rams, which allows for less area requirement and more economical technological conditions. The traditional castration (with a knife) process is longer (4–6 minutes), and caused longer-lasting stress while the elastrator application is bloodless, took only 20–30 seconds, and were stress-free. The number of steps of ring-gelded individuals was much lower than that of the non-castrated rams. The difference in steps number could also be seen in ewes separated into different ram groups. The weight gains of individuals castrated by the ring were better than the surgically castrated ones and also individuals with testicles. The palatability of the meat from the non-castrated group was less favorable, and the chewiness of the ringed group was the best. Finally, our results highlighted the benefits of the noninvasive elastrator method in animal welfare aspects.

  • Management of phytopathogens by application of green nanobiotechnology: Emerging trends and challenges
    15-22
    Views:
    257

    Nanotechnology is highly interdisciplinary and important research area in modern science. The use of nanomaterials offer major advantages due to their unique size, shape and significantly improved physical, chemical, biological and antimicrobial properties. Physicochemical and antimicrobial properties of metal nanoparticles have received much attention of researchers. There are different methods i.e. chemical, physical and biological for synthesis of nanoparticles. Chemical and physical methods have some limitations, and therefore, biological methods are needed to develop environment-friendly synthesis of nanoparticles. Moreover, biological method for the production of nanoparticles is simpler than chemical method as biological agents secrete large amount of enzymes, which reduce metals and can be responsible for the synthesis and capping on nanoparticles.

    Biological systems for nanoparticle synthesis include plants, fungi, bacteria, yeasts, and actinomycetes. Many plant species including Opuntia ficus-indica, Azardirachta indica, Lawsonia inermis, Triticum aestivum, Hydrilla verticillata, Citrus medica, Catharanthus roseus, Avena sativa, etc., bacteria, such as Bacillus subtilis, Sulfate-Reducing Bacteria, Pseudomonas stutzeri, Lactobacillus sp., Klebsiella aerogenes, Torulopsis sp., and fungi, like Fusarium spp. Aspergillus spp., Verticillium spp., Saccharomyces cerevisae MKY3, Phoma spp. etc. have been exploited for the synthesis of different nanoparticles. Among all biological systems, fungi have been found to be more efficient system for synthesis of metal nanoparticles as they are easy to grow, produce more biomass and secret many enzymes. We proposed the term myconanotechnology (myco = fungi, nanotechnology = the creation and exploitation of materials in the size range of 1–100 nm). Myconanotechnology is the interface between mycology and nanotechnology, and is an exciting new applied interdisciplinary science that may have considerable potential, partly due to the wide range and diversity of fungi.

    Nanotechnology is the promising tool to improve agricultural productivity though delivery of genes and drug molecules to target sites at cellular levels, genetic improvement, and nano-array based gene-technologies for gene expressions in plants and also use of nanoparticles-based gene transfer for breeding of varieties resistant to different pathogens and pests. The nanoparticles like copper (Cu), silver (Ag), titanium (Ti) and chitosan have shown their potential as novel antimicrobials for the management of pathogenic microorganisms affecting agricultural crops. Different experiments confirmed that fungal hyphae and conidial germination of pathogenic fungi are significantly inhibited by copper nanoparticles. The nanotechnologies can be used for the disease detection and also for its management. The progress in development of nano-herbicides, nano-fungicides and nano-pesticides will open up new avenues in the field of management of plant pathogens. The use of different nanoparticles in agriculture will increase productivity of crop. It is the necessity of time to use nanotechnology in agriculture with extensive experimental trials. However, there are challenges particularly the toxicity, which is not a big issue as compared to fungicides and pesticides.

  • Application of mycorrhizae and rhizobacteria inoculations in the cultivation of processing tomato under water shortage
    111-118
    Views:
    49

    The effect of mycorrhizal fungi and plant growth promoting rhizobacteria on some physiological properties, yield and soluble solid content (Brix) of ‘Uno Rosso’ F1 processing tomato was studied under water scarcity. Inoculation was performed with mycorrhizal fungi (M) and rhizobacteria preparation (PH) at sowing (M1, PH1) and sowing + planting (M2, PH2). The treated and untreated plants were grown with regular irrigation (RI = ET100%), with deficit irrigation (DI = ET50%) and without irrigation (I0). In drought, the canopy temperature of plants inoculated with arbuscular mycorrhizal fungi (M1, M2) decreased significantly, however, the decrease was small in those treated with the bacterium (PH1, PH2), while the SPAD value of the leaves of plants treated only with Phylazonit increased significantly. On two occasions, inoculations (M2, PH2) significantly increased the total yield and marketable yield, however, under water deficiency, a higher rate of green yield was detected than untreated plants. In dry year using deficit irrigation, the one-time inoculation (M1, PH1) provided a more favorable Brix value, while the double treatments reduced the Brix. In moderate water scarcity, the use of mycorrhizal inoculation (M2) is preferable, while under weak water stress, the use of rhizobacteria inoculation (PH2) is more favorable.

  • Alternatives of the multiple use of Virginia mallow (Sida hermaphrodita L. Rusby) as a shrub-replacing mallow in the temperate climate zone
    51-56
    Views:
    159

    In the seventies of the previous century, Dr. Zoltán Kováts set two directions in the research of mallows. One of the directions was the biotechnology of the mallow species and the other direction is using the mallow species as biomass material. In order to do this he brought mallow mother spawns of ornamental and biomass sorts from botanical gardens abroad and tested many of them, including the a Sida hermaphrodita kind. Fourty years later, for the second time this plant, known as the „energy mallow” got back to Hungary again, right into the sight of hungarian biomass business with the help of László Balogh and his associates using help from Poland. This genus got into the center of our research, because of it’s valuable attributes. The latest experiments are about using it as an energy plant, without examining genetic details. The plant grows up to more
    than 3 meters, has high growing rate and produces big amount of green mass. We don’t have any hungarian data about whether the plant continues the sufficient growing rate or not, after cutting it back.
    We have to explore the potentials in the Sida’s sublimation. The plant is mostly suitable for ornamental and energy utilization, so further sublimation should be aiming for these aspects. During my research period, we are willing to get to know these potentials and the best possible use of them.