No. 1 (2022)
Articles

Use of molecular marker methods in the classification of bamboo taxa: A review

Published May 26, 2022
Chan Nyein Khin
The Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science (MATE)
Anikó Veres
The Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science (MATE)
András Neményi
a:1:{s:5:"en_US";s:21:"Szent István egyetem";}
pdf

APA

Khin, C. N. ., Veres, A., & Neményi, A. (2022). Use of molecular marker methods in the classification of bamboo taxa: A review. Acta Agraria Debreceniensis, (1), 51–59. https://doi.org/10.34101/actaagrar/1/10392

Bamboo plants are currently attractive to researchers because of their versatile uses. Understanding the bamboos’ genetic level is needed to develop new varieties. Taxonomic identification is the basis for plant development. Bamboos were identified as their taxonomical morphological characters which are dependent on environmental factors. Molecular Marker techniques can be used to perform accurate genotype identification, which can be used for genetic diversity analyses. The RFLP, RAPD, AFLP, SSR, ISSR, iPBS, SCARS, SCoT, SRAP marker systems have been shown to be able to efficiently determine the genetic diversity of bamboo species based on genotyping. This paper summarizes research that aims to analyze the genetic diversity of bamboo species on a molecular basis.

Downloads

Download data is not yet available.
  1. Abdelaziz, S.M.–Medraoui, L.–Alami, M.–Pakhrou, O.–Makkaoui, M.–Boukhary, A.O.M.S.–Filali-Maltouf, A. (2020): Inter simple sequence repeat markers to assess genetic diversity of the desert date (Balanites aegyptiaca Del.) for Sahelian ecosystem restoration. Scientific Reports. 10:14948, https://doi.org/10.1038/s41598-020-71835-9
  2. Abreu. A.G.–Grombone-Guaratine, M.T.–Monteiro, M.–Pinheiro, J.B.–Tombolato, A.F.C.–Zucchi, M.I. (2011): Development of Microsatellite Markers for Aulonemia aristulata (Poaceae) and Cross-Amplification in other Bamboo Species. American Journal of Botany: e90–e92, http://www.amjbot.org. https://doi.org/10.3732/ajb.1000511
  3. Akhtar, N.–Hafiz, I.A.–Hayat, M.Q.–Potter, D.–Abbasi, B.A.–Habib, U.–Hussain, A.–Hafeez, H.–Bashir, M.A.–Malik, S.I. (2021): ISSR-Based Genetic Diversity Assessment of Genus Jasminum L. (Oleaceae) from Pakistan. Plants. 10(7): 1270. https://doi.org/10.3390/plants10071270
  4. Alansi, S.–Tarroum, M.–Al-Qurainy, F.–Khan, S.–Nadeem, M. (2016): Use of ISSR markers to assess the genetic diversity in wild medicinal Ziziphus-spina-christi (L.) Willd. collected from different regions of Saudi Arabia, Biotechnology & Biotechnological Equipment, 30(5): 942–947. https://doi.org/10.1080/13102818.2016.1199287
  5. Amom, T.–Tikendra, L.–Apana, N.–Goutam, M.–Sonia, P.–Koijam, A.S.–Potshangbam, A.M.–Rahaman, H.–Nongdam, P.
  6. (2020): Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of
  7. five native and economical important bamboos
  8. of North-East India. Phytochemistry. https://doi.org/10.1016/j.phytochem.2020.112330
  9. Amom, T.–Tikendra, L.–Rahaman, H.–Potshangbam, A.–Nongdam, P. (2018): Evaluation of genetic relationship between 15 bamboo species of North-East India based on ISSR marker analysis. Molecular Biology Research Communications, 7(1):7–15. https://doi.org/10.22099/mbrc.2018.28378.1303
  10. Annisa–Hafzari, R.–Setiawati, T.–Irawan, B.–Kusmoro, J. (2019): Evaluation of RAPD markers for molecular identification of five bamboo genera from Indonesia. Folia Forestalia Polonica, Series A – Forestry, 61(4): 255–266. https://doi.org/10.2478/ffp-2019-0025
  11. Barkley, N.A.–Newman, M.–Wang, M.L.–Hotchkiss, M.–Pederson, G. (2015): Assessment of the genetic diversity and phylogenetic relationships of a temperate bamboo collection by using transferred EST–SSR markers. Genome. 48: 731–737. https://doi.org/10.1139/g05-022
  12. Botstein, D.–White, R.L.–Skolnick, M.–Davis, R.W. (1980): Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331. PMCID: PMC1686077
  13. Cai, K.–Zhu, L.–Zhang, K.–Li, L.–Zhao, Z.–Zeng, W.–Lin, X. (2019): Development and Characterization of EST-SSR Markers From RNA-Seq Data in Phyllostachys vioascens. Frontiers in Plant Science. 10(50). https://doi.org/10.3389/fpls.2019.00050
  14. Chen, S.Y.–Lin, Y.T.–Lin, C.W.–Chen, W.Y.–Yang, C.H.–Ku, H.M. (2010): Transferability of rice SSR markers to bamboo. Euphytica. 175: 23–33. https://doi.org/10.1007/s10681-010-0159-2
  15. Chesnokov, Y.V.–Kosolapov, V.M.–Savchenko, I.V. (2020). Morphological Genetic Markers in Plants: Reviews and Theoretical articles. Russian Journal of Genetics. 56 (12):1406–1415. https://doi.org/10.1134/S1022795420120042
  16. Collard, B.C.Y.–Mackill, D.J. (2009): Start Codon Targeted (SCoT) Polymorphism: A Simple, Novel DNA Marker Technique for Generating Gene-Targeted Markers in Plants. Plant Molecular Biology Reporter. 27(1): 86–93. https://doi.org/10.1007/s11105-008-0060-5
  17. Das, M.–Bhattachary, S.–Pal, A. (2005): Generation and Characterization of SCARs by Cloning and Sequencing of RAPD Products: A Strategy for Species-specific Marker Development in Bamboo. Annals of Botany 95: 835–841. https://doi.org/10.1093/aob/mci088
  18. DAS, M.–Bhattacharya, S.–Singh, P.–Filgueiras, T.S.–Pal, M. (2008): Bamboo Taxonomy and Diversity in the Era of Molecular Markers. Advances in Botanical Research, Incorporating Advances in Plant Pathology, 47: 225–268. https://doi.org/10.1016/S0065-2296(08)00005-0
  19. Desai, P.–Gajera, B.–Mankad, M.–Shah, S.–Patel, A.–Patil, G.–Narayanan, S.–Kumar, N. (2015): Comparative assessment of genetic diversity among Indian bamboo genotypes using RAPD and ISSR markers. Molecular Biology Reports, 42(8): 1265–1273. https://doi.org/10.1007/s11033-015-3867-9
  20. Disasa, T.–Feyissa, T.–Sertse, D. (2016): Transferability of Sorghum Microsatellite Markers to Bamboo and Detection of Polymorphic Markers. The Open Biotechnology Journal, 10: 223–233. https://doi.org/10.2174/18740707016100100223
  21. Eevera, T.–Pajandran, K.–Saradha, S.–Lashmi, A. (2008): Analysis of Genetic Variation in Selected Bamboo Species using RAPD. Tree and Forestry Science and Biotechnology. 2 (1): 54–56.
  22. FAO (2020): Global Forest Resources Assessment 2020:
  23. Main report. https://www.fao.org/national-forest-monitoring/news/detail/en/c/1430457/
  24. Friar, E.–Kochert, G. (1991): Bamboo germplasm screening with nuclear restriction fragment length polymorphisms. Theoretical and Applied Genetics. 82: 697–703. https://doi.org/10.1007/BF00227313
  25. Friar, E.–Kochert, G. (1994): A study of genetic variation and evolution of Phyllostachys (Bambusoideae: Poaceae) using nuclear restriction fragment length polymorphisms. Theoretical and Applied Genetics. 89: 265–270. https://doi.org/10.1007/BF00225152
  26. Fu, M.–Xiao, J.–Lou, Y. (2000): Cultivation and Utilization on Bamboo. Training Manual for International Bamboo Training Workshops in Research Institute of Subtropical Forestry, Chinese Academy of Forestry. Beijing: China Forestry Publishing House. ISBN:7503821477 9787503821479.
  27. Gielis, J.–Colpaert, N.–Broeke, C.V.D.–Kyndt, T.–Gheysen, G. (2004): AFLP-Technology for Bamboo Research: One Marker System for a Variety of Applications. Proc. VII World Bamboo Congress, Delhi, February.
  28. Gielis, J.–Everaert, I.–De, L.M. (1997): Analysis of genetic variability and relationships in Phyllostachys using random amplified polymorphic DNA. In: Chapman G, eds. The bamboos. pp. 107–124. Academic Press, London.
  29. Ian, D.–Godwin, I.D.–Aitken, E.A.B.–Smith, L.W. (1997): Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis. 18(9): 1524–1528. https://doi.org/10.1002/elps.1150180906
  30. Isagi, Y.–Shimada, K.–Kushima, H.–Tanaka, N.–Nagao, A., Ishikawa, T.–OnoDera, H.–Watanabe, S. (2004): Clonal structure and flowering traits of a bamboo (Phyllostachys pubescens (Mazel) Ohwi) stand grown from a simultaneous flowering as revealed by AFLP analysis. Molecular Ecology. 13(7): 2017–2021. https://doi.org/10.1111/j.1365-294X.2004.02197.x
  31. Jihad, A.N.–Budiadi–Widiyatno. (2021): Growth response of Dendrocalamus asper on elevational variation and intra-clump spacing management. In: Somboon K (Eds.), Review of Bamboo Management: Promotion of the Utilization of Bamboo from Sustainable Sources in Thailand, 2001, PD 56/99 Rev. L(I). Technical Report No.1. ITTO and Royal Forest Department, Bangkok. https://doi.org/10.13057/biodiv/d220925
  32. Kalendar, R.–Amenov, A.–Daniyarov, A. (2018): Use of retrotransposon-derived genetic markers to analyse genomic variability in plants. Functional Plant Biology. 46(1): 15–29. https://doi.org/10.1071/FP18098.
  33. Konzen, E.R.–Perón, R.–Ito, M.A.–Brondani, G.E.–Tsai, S.M. (2017): Molecular identification of bamboo genera and species based on RAPD-RFLP markers. Silva Fennica. 51(4). id 1691. 16 p. https://doi.org/10.14214/sf.1691.
  34. Kumar, M.–Chaudhary, V.–Sirohi, U.–Singh, M.K.–Malik, S.–Naresh, R.K. (2018): Biochemical and molecular markers for characterization of chrysanthemum germplasm: A review. Journal of Pharmacognosy and Phytochemistry.7(5): 2641–2652. E-ISSN: 2278-4136
  35. Lai, C.C.–Hsiao, J.Y. (1997): Genetic variation of Phyllostachys pubescens (Bambusoideae, Poaceae) in Taiwan based on DNA polymorphisms. Botanical Bulletin of Academia Sinica. 38: 145–152.
  36. Li, G.–Quiros, C.F. (2001): Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics. 103: 455–461. http://dx.doi.org/10.1007/s001220100570
  37. Li, S.–Ramakrishnan, M.–Vinod, K.K.–Kalendar, R.–Yrjälä, K.–Zhou, M. (2019): Development and Deployment of High-Throughput Retrotransposon-Based Markers Reveal Genetic Diversity and Population Structure of Asian Bamboo. Forests. 11(1): 31. https://doi.org/10.3390/f11010031
  38. Lin, X.C.–Ruan, X.S.–Lou, Y.F.–Guo, X.Q.–Fang, W. (2009): Genetic similarity among cultivars of Phyllostachys pubescens. Plant Systematics and Evolution. 1(277): 67–73. https://doi.org/10.1007/s00606-008-0104-1
  39. Lin, X.–Lou, Y.–Zhang, Y.–Yuan, X.–He, J.–Fang, W. (2011): Identification of Genetic Diversity Among Cultivars of Phyllostachys violascens Using ISSR, SRAP and AFLP Markers. The Botanical Review. 77(3): 223–232. https://doi.org/10.1007/s12229-011-9078-8
  40. Litt, M.–Lutty, J.A. (1989): A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics. 44(3): 397–401. PMID: 2563634.
  41. Loh, J.P.–Kiew, R.–Set, O.–Gan, L.H.–Gan, Y.Y. (2000): A study of genetic variation and relationships within the bamboo
  42. subtribe Bambusinae using amplified fragment length polymorphism. Annals of Botany, 85: 607–612. https://doi.org/10.1006/anbo.2000.1109, http://www.idealibrary.com.
  43. Ma, Q-q.–Song, H-x.–Zhou, S-q.–Yang, W-q.–Li, D-s. (2013): Genetic Structure in Dwarf Bamboo (Bashania fangiana) Clonal Populations with Different Genet Ages. PLoS ONE 8(11): e78784. https://doi.org/10.1371/journal.pone.0078784
  44. Mahmoud, A.F.–Abd El-Fatah, B.E.S. (2020): Genetic Diversity Studies and Identification of Molecular and Biochemical Markers Associated with Fusarium Wilt Resistance in Cultivated Faba Bean (Vicia faba). The Plant Pathology Journal. 36(1): 11–28. https://doi.org/10.5423/PPJ.OA.04.2019.0119. pISSN 1598-2254 eISSN 2093-9280
  45. Mandi, S.S.–Ghosh, S.–Somkuwar, B.–Talukdar, N.C. (2012): Genetic variability and Phylogenetic relationship among some Bamboo species of North-East India by AFLP analysis. Asian Journal of Plant Science and Research. 2(4): 478–485. ISSN: 2249-7412
  46. Meena, R.K.–Bhandhari, M.S.–Barhwal, S.–Ginwal, H.S. (2019): Genetic diversity and structure of Dendrocalamus hamiltonii natural metapopulation: a commercially important bamboo species of northeast Himalayas. 3 Biotech, 9 (2): 60. https://doi.org/10.1007/s13205-019-1591-1
  47. Mehta, R.–Sharma, V.–Sood, A.–Sharma, M.–Sharma, R.K. (2010): Induction of somatic embryogenesis and analysis of genetic fidelity of in vitro-derived plantlets of Bambusa nutans Wall., using AFLP markers. European Journal of Forest Research. 130:729–736. https://doi.org/10.1007/s10342-010-0462-4
  48. Mukherjee, A.K.–Ratha, S.–Dhar, S.–Debata, A.K.–Acharya, P.K.–Mandal, S.–Panda, P.C.–Mahapatra, A.K. (2010): Genetic Relationships Among 22 Taxa of Bamboo Revealed by ISSR and EST-Based Random Primers. Biochemical Genetics, 48:1015–1025. https://doi.org/10.1007/s10528-010-9390-8
  49. Nath, A.R.–Lal, R.–Das, A.K. (2015): Managing woody bamboos for carbon farming and carbon trading. Review paper. Global Ecology and Conservation. 3: 654–663. http://dx.doi.org/10.1016/j.gecco.2015.03.002
  50. Nayak, S.–Rout, G.R. (2005): Isolation and characterization of microsatellites in Bambusa arundinacea and cross species amplification in other bamboos. African Journal of Biotechnology 4(2): 151–156. eISSN: 1684-5315.
  51. Nayak, S.–Rout, G.R.–Das, P. (2003): Evaluation of the genetic variability in bamboo using RAPD markers. Plant, Soil and Environment. 49(1): 24–28. http://dx.doi.org/10.17221/4085-PSE
  52. Nilkanta, H.–Amom, T.–Tikendra, L.–Rahaman, H.–Nongdam, P. (2017): ISSR Marker Based Population Genetic Study of Melocanna baccifera (Roxb.) Kurz: A Commercially Important Bamboo of Manipur, North-East India. Scientifica (Hindawi), 2017(3757238). https://doi.org/10.1155/2017/3757238
  53. Paran, I.–Michelmore, R.W. (1993): Development of Reliable PCR-Based Markers Linked to Downy Mildew Resistance Genes in Lettuce. Theoretical and Applied Genetics, 85: 985–993. http://dx.doi.org/10.1007/BF00215038
  54. Pattanaik. S.–Hall, J.B. (2011): Molecular evidence for polyphyly in the woody bamboo genus Dendrocalamus (subtribe Bambusinae). Plant Systematics and Evolution. 291, no 1–2: 59–67. https://doi.org/stable/10.1007/s00606-010-0380-4
  55. Proyuth, L.–Didier, P.–Patrice, L.–Andreas de, N. (2012): Evaluation of bamboo as an alternative cropping strategy in the northern central upland of Vietnam: Above-ground carbon fixing capacity, accumulation of soil organic carbon, and socio-economic aspects. Agriculture, Ecosystems and Environment, 149: 80–90.
  56. Rangsiruji, A.–Binchai, S.–Pringsulaka, O. (2018): Species identification of economic bamboos in the genus Dendrocalamus using SCAR and multiplex PCR. Songklanakarin Journal of Science and Technology. 40 (3): 640–647.
  57. Rao, A.N.–Rao, R.V.–Williams, J.T. (Eds.). (1998): Priority Species of Bamboo and Rattan. IPGRI/INBAR. ISBN: 92-9043-491-5.
  58. Rao, V.R. (1995): Bamboo, People and the Environment: Proceedings of the Vth International Bamboo Workshop and the IV International Bamboo Congress Ubud, Bali, Indonesia, 19–22 June 1995. International Network for Bamboo and Rattan. Vol 2. ISBN 81-86247-l 5-7.
  59. Robarts, D.W.H.–Wolfe, A.D. (2021): Sequence-Related Amplified Polymorphism (SRAP) Markers: A Potential Resource for Studies in Plant Molecular Biology. Review Paper. Application in Plant Sciences, 2 (7): 1400017. https://doi.org/10.3732/apps.1400017
  60. Sawarkar, A.D.–Shrimankar, D.D.–Kumar, M.–Kumar, P.–Kumar, S.–Singh, L. (2021): Traditional System Versus DNA Barcoding in Identification of Bamboo Species: A Systematic
  61. Review. Molecular Biotechnology, 63:651–675. https://doi.org/10.1007/s12033-021-00337-4
  62. Schulman, A.H.–Flavell A.J.–Noel Ellis, T.H. (2004): The application of LTR retrotransposons as molecular markers in plants. Methods in Molecular Biology. 260:145–173. https://doi.org/10.1385/1-59259-755-6:145.
  63. Shalini, A.–Tarafdar, S.–Thakur, S. (2013): Evaluation of Genetic Diversity in Bamboo through DNA Marker and Study of Association with Morphological Traits. Bulletin of Environment, Pharmacology and Life Sciences. 2(8): 78–83. Online ISSN 2277-1808.
  64. Sharma, R.K.–Gupta, P.–Sharma, V.–Sood, A.–Mohapatra, T.–Ahuja, P.S. (2008). Evaluation of rice and sugarcane SSR markers for phylogenetic and genetic diversity analyses in bamboo. Genome 51(2): 91–103. https://doi.org/10.1139/G07-101
  65. Somboon, K. (2001): Review of Bamboo Management: Promotion of the Utilization of Bamboo from Sustainable Sources in Thailand, PD 56/99 Rev. L(I). Technical Report No.1. ITTO and Royal Forest Department, Bangkok.
  66. Suyama, Y.–Obayashi, K.–Hayashi, I. (2000): Clonal structure in a dwarf bamboo (Sasa senanensis) population inferred from amplified fragment length polymorphism (AFLP)
  67. fingerprints. Molecular Ecology, 9(7): 901–906. https://doi.org/10.1046/j.1365-294x.2000.00943.x
  68. Thakur, A.–Barthwal, S.–Ginwal, H.S. (2016): Genetic diversity in bamboos: Conservation and improvement for productivity. ENVIS Forestry Bulletin, p.131–146.
  69. Tiwari, C.–Bakshi, M.–Gupta, D. (2019): Genetic Diversity Evaluation of Thamnocalamus spathiflorus (Trin.) Munro Accessions. Journal of Forest and Environmental Science. 35(2): 90–101. https://doi.org/10.7747/JFES.2019.35.2.90, pISSN: 2288-9744, eISSN: 2288-9752
  70. Viet, H.T (2010): Growth and quality of indigenous bamboo species in the mountainous regions of Northern Vietnam. Göttingen, Germany, University of Göttingen. PhD Thesis.
  71. Vos, P.–Hogers, R.–Bleeker, M.–Reijans, M.–Lee, T.V.D.–Hornes, M.–Frijters, A.–Pot, J.–Peleman, J.–Kuiper, M. (1995): AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research. 23(21): 4407–4414. https://doi.org/10.1093/nar/23.21.4407.
  72. Williams, J.G.K.–Kubelik, A.R.–Livak, K.J.–Rafalski, J.A.–Tingey, S.V. (1990): DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 18(22): 6531–6535. https://doi.org/10.1093/nar/18.22.6531
  73. Xiao, L.Q.–Ge, X.J.–Gong, X.–Hao, G.–Zheng, S.H. (2004): ISSR Variation in the Endemic and Endangered Plant Cycas guizhouensis (Cycadaceae). Annals of Botany 94(1): 133–138. https://doi.org/10.1093/aob/mch119
  74. Yang, H.Q.–An, M.Y.–Gu, Z.J.–Tian, B. (2012): Genetic Diversity and Differentiation of Dendrocalamus membranaceus (Poaceae: Bambusoideae), a Declining Bamboo Species in Yunnan, China, as Based on Inter-Simple Sequence Repeat (ISSR) Analysis. International Journal of Molecular Sciences. 13(4): 4446–4457; https://doi.org/10.3390/ijms13044446, ISSN 1422-0067.
  75. Zhu, S.–Liu, T.–Tang, Q.–Fu, L.–Tang, Sh. (2014). Evaluation of Bamboo Genetic Diversity Using Morphological and SRAP Analyses. Russian Journal of Genetics. 50(3): 267–273. https://doi.org/10.1134/S1022795414030132, ISSN 1022-7954.
  76. Zietkiewicz, E.–Rafalski, A.–Labuda, D. (1994): Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics. 20: 176–183. http://dx.doi.org/10.1006/geno.1994.1151
  77. Žukauskienė, J.–Paulauskas, A.–Varkulevičienė, J.–Maršelienė, R.–Gliaudelytė, V. (2014). Genetic Diversity of Five Different Lily (Lilium L.) Species in Lithuania Revealed by ISSR Markers. American Journal of Plant Sciences. 5(18): 2741–2747. https://doi.org/10.4236/ajps.2014.518290.