No. 1 (2022)

Potential use of bamboo in the phytoremediation in of heavy metals: A review

Published May 26, 2022
Zhiwei Liang
Institute of Crop Production Sciences, Hungarian University of Agriculture and Life Science, Páter Károly u. 1, H-2100 Gödöllő, Hungary
Gergő Péter Kovács
Institute of Crop Production Sciences, Hungarian University of Agriculture and Life Science, Páter Károly u. 1, H-2100 Gödöllő, Hungary
Csaba Gyuricza
Institute of Crop Production Sciences, Hungarian University of Agriculture and Life Science, Páter Károly u. 1, H-2100 Gödöllő, Hungary
András Neményi
a:1:{s:5:"en_US";s:21:"Szent István egyetem";}


Liang, Z., Kovács, G. P., Gyuricza, C., & Neményi, A. (2022). Potential use of bamboo in the phytoremediation in of heavy metals: A review. Acta Agraria Debreceniensis, (1), 91–97.

There are many literature sources focusing on the phytoremediation of woody plants, but there are only few dealing with the phytoremediation of bamboo plants. Phytoremediation technology has the advantages of little disturbance to the environment and low remediation cost. Bamboo mainly exists in tropical and subtropical regions. As an energy plant, bamboo has a fast growth cycle, large biomass, simple cultivation, high economic efficiency, and convenient harvesting, which highlights the advantages of bamboo in phytoremediation. In addition, bamboo plants have good tolerance and uptake ability to heavy metals and have high application potential and development value in uptaking heavy metal contaminated soil. However, due to climate, temperature and other reasons, bamboo cannot be widely planted in most countries. Research status of remediation of heavy metal contaminated soil by bamboo plants is summarized. The feasibility of its application in heavy metal contaminated soil is discussed in this paper. Aiming at the shortcomings of existing research, bamboo plants have a prospect in the field of plant phytoremediation for the future.


Download data is not yet available.
  1. Ali, H.–Khan, E.–Sajad, M.A. (2013): Phytoremediation of heavy metals-Concepts and applications. Chemosphere, 91(7), 869–881.
  2. Bassam, N.E. (1998): Energy plant species (Vol. 7).
  3. Bian, F. (2018): Study on Phytoremediation of Heavy Metal Contaminated Soil by Bamboo Stand. Chinese Academy of Forestry.
  4. Bian, F.–Zhong, Z.–Li, C.–Zhang, X.–Gu, L.–Huang, Z.–Gai, X.–Huang, Z. (2021): Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. Journal of
  5. Hazardous Materials, 416 (April), 125898.
  6. Bian, F.–Zhong, Z.–Zhang, X.–Yang, C. (2017): Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil. Environmental Science and Pollution Research, 24(35), 27244–27253.
  7. Cai, X.–Liao, J.–Yang, Y.–Li, N.–Xu, M.–Jiang, M.–Chen, Q.–Li, X.–Liu, S.–Luo, Z.–Sun, L. (2021): Physiological resistance of Sasa argenteostriata (Regel) E.G. Camus in response to high-concentration soil Pb stress. Acta Physiologiae Plantarum, 43(2).
  8. Chen, J.R.–Peng, D.L.–Shafi, M.–Li, S.–Wu, J.S.–Ye, Z.Q.–Wang, Y., Yan, W. B., & Liu, D. (2015): Phytoremediation potential of moso bamboo (Phyllostachys pubescens) for zinc and ultrastructure changes under zinc toxicity. Russian Journal of Ecology, 46(5), 444–449.
  9. Chen, J.R.–Liu, D.–Wu, J.–Li, S.–Yan, W.B.–Peng, D.L.–Ye, Z.Q.–Wang, H.L. (2014a): Seed germination and metal accumulation of Moso bamboo (Phyllostachys pubescens) under heavy metal exposure. Shengtai Xuebao/ Acta Ecologica Sinica, 34(22), 6501–6509.
  10. Chen, J.–Liu, D.–Wu, J.S.–Li, S.–Yan, W.–Peng, D.–Ye, Z.–Wang, H.L. (2015a): The Research of Typical Materials for Phytoremedication and the Application Feasibility of Phyllostachys heterocycla cv . pubescens. Journal of Bamboo Research, 34(2), 61–66.
  11. Chen, J.–Peng, D.–Shafi, M.–Li, S.–Wu, J.–Ye, Z.–Yan, W.–Lu, K.–Liu, D. (2014b): Effect of copper toxicity on root morphology, ultrastructure, and copper accumulation in moso bamboo (Phyllostachys pubescens). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 69(9–10), 399–406.
  12. Chen, J.–Shafi, M.–Li, S.–Wang, Y.–Wu, J.–Ye, Z.–Peng, D.–Yan, W.–Liu, D. (2015b): Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Scientific Reports, 5(July), 1–9.
  13. Chen, T. (2015): Characteristic analysis of heavy metal contents in Soil and bamboo shoots in Phyllostachys praecox stands associated with various mulching times. Zhejiang Forestry University.
  14. Chen, Y.–Ren, J.–Cai, X. (1998): Effect of cadmium on nitrate reductase and superoxide dismutase activities in submerged plants. Acta Scientiae Circumstantiae, 18, 313–317.
  15. Chua, J.–Banua, J.M.–Arcilla, I.–Orbecido, A.–de Castro, M.E.–Ledesma, N.–Deocaris, C.–Madrazo, C.–Belo, L. (2019): Phytoremediation potential and copper uptake kinetics of Philippine bamboo species in copper contaminated substrate. Heliyon, 5(9), e02440.
  16. Dang, W.–Jiang, Z.–Li, R.–Zhang, S.–Cai, J. (2017): Relationship between Hydraulic Traits and Refilling of Embolism in the Xylem of One-Year-Old Twigs of Six Tree Species Dang. Scientia Silvae Sinicae, 53(3), 49–59.
  17. Duan, C.–Yang, B.–Han, Y.–Zhang, Q.–Gong, X.–Zhang, Y. (2019): Heavy metals bioaccumulation capacity of dwarf bamboo in southwest mountain. Ecology and Environmental Sciences, 28(6), 1224–1232.
  18. Fan, S.H.–Liu, G.L.–Su, W.H.–Cai, C.J.–Guan, F.Y. (2018): Advances in Research of Bamboo Forest Cultivation.
  19. Forest Research, 31(1), 137–144.
  20. FAO (2010): Global Forest Resources Assessment 2010: Main Reports.
  21. Go, J.L.C.–Madrazo, C.F.–Orbecido, A.H.–de Castro, M.E.G.–Deocaris, C.C.–Belo, L.P. (2021): Analysis of the copper removal kinetics of the Philippine giant bamboo (Dendrocalamus asper) in hydroponics. Heliyon, 7(2), e06208.
  22. Guo, H.–Chen, J.–Zhong, B.–Liu, C.–Wu, J.–He, L.–Ye, Z.–Liu, D. (2017). Heavy metal concentration, enzyme activity, and physical and chemical properties of rhizosphere and non-rhizosphere soils containing Moso bamboo. Acta Ecologica Sinica, 27(11), 6149–6156. 10.5846/stxb201606201199
  23. Jiang, L. (2009): Research on the Physiological Adaptability of Bamboo Stressed by Excess Copper. Nanjing Agricultural University.
  24. Jiang, L.–Shi, G.–Ding, Y.–Lou, L.–Cai, Q. (2013): Differential Responses of two Bamboo Species (Phyllostachys Auresulcata “Spectabilis” and Pleioblastus Chino ’Hisauchii’) to Excess Copper. Bioenergy Research, 6(4), 1223–1229.
  25. Jiang, M.–Cai, X.–Liao, J.–Yang, Y.–Chen, Q.–Gao, S.–Yu, X.–Luo, Z.–Lei, T.–Lv, B.–Liu, S. (2020): Different strategies for lead detoxification in dwarf bamboo tissues. Ecotoxicology
  26. and Environmental Safety, 193(February).
  27. Jiang, M.–Liu, S.–Li, Y.–Li, X.–Luo, Z.–Song, H.–Chen, Q. (2019): EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicology and Environmental Safety, 170(December 2018), 502–512.
  28. Jiang, P.–Xu, Q. (2005): Dynamics of Heavy Metal Amount in Soil with Different Treatments under PHyllostach ys praecox Stands. Journal of Soil and Water Conservation, 19(1), 168–180. : 10. 13870 /j . cnki . st bcxb. 2005. 01. 042
  29. Jiang, X.–Zhao, K. (2001): Heavy metal injury and its resistance mechanism in plants. Chinese Journal of Applied and Environmental Biology, 7, 92–99.
  30. Kisvarga, S.–Orloci, L.–Nemenyi, A. (2021): Investigation of winter hardiness and stem diameter of Phyllostachys taxa in Hungarian. Gradus, 8(2), 18–24.
  31. Kocsis, K. (Editor-in-C. (2018): National Atlas of Hungary – Natural environment (MTA CSFK G).
  32. Li, J.–Gao, J. (2015). Photosynthetic and Physiological Responses to Drought Cold and Pb Stresses in Pleioblastus kongosanensi, Indocalamus latifolius and Sasa fortunei. Journal of Bamboo Research, 35, 2–9.
  33. Li, S.–Dan, L.–JiaSen;W.–Zhengqian;Y.–JiaYing, W.–JunRen, C.–Danli, P.–Wenbo, Y. (2014): Effects of Lead Stress on Physiological Response and Phytoremediation Efficiency of Phyllostachys praecox. Journal of Soil and Water Conservation, 28, 175–179.
  34. Li, S.–Chen, J.–Islam, E.–Wang, Y.–Wu, J.–Ye, Z.–Yan, W.–Peng, D.–Liu, D. (2016): Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in
  35. organs of moso bamboo (Phyllostachys pubescens)
  36. seedlings. Chemosphere, 153, 107–114.
  37. Li, T. (2016): Effects of Mulching on Soil Physicochemistry Properties and Quality of Bamboo Shoots in Phyllostachys heterocycla Stand. Sichuan Agricultural university.
  38. Li, Z.–Cai, K.–Chen, G.–Lou, L. (2010): Effect of Continuous Drought Stress and Rewatering on Osmo-regulation Substances and Cell Membrane Permeability in Leaves of Dendrocalamus latiflorus. Journal of Sichuan Forestry Science, 31, 55–59.
  39. Liu, D.–Chen, J.–Mahmood, Q.–Li, S.–Wu, J.–Ye, Z.–Peng, D.–Yan, W.–Lu, K. (2014): Effect of Zn toxicity on root morphology, ultrastructure, and the ability to accumulate Zn in Moso bamboo (Phyllostachys pubescens). Environmental Science and Pollution Research, 21(23), 13615–13624.
  40. Liu, D.–Li, S.–Islam, E.–Chen, J. ren–Wu, J. sen–Ye, Z. qian–Peng, D. li–Yan, W. bo–Lu, K. ping (2015): Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation. Journal of Zhejiang University: Science B, 16(2), 123–130.
  41. Liu, J.–Yin, X.–Sun, H.–Lv, J.–Wei, G. (2015): EDTA and EDDS Enhanced Remediation of Cd and Pb Contaminated Soil by Ramie Boehmeria Nivea. Journal of Agro-Environment Science, 34(7), 1293–1300.
  42. Liu, Y.–Chen, S.–Li, Y.–Guo, Z.–Yang, Q. (2018): Effect of density on porosity and physical - mechanical properties of high - performance scrimbers. Journal of Zhejiang A&F University, 31, 473–480.
  43. Ma, Y.– Gao, Y.– Yuan. T– Dai, L– Zhang, Y– Xie, Y (2019). Effects of heavy metal chromium stress on the photosynthetic characteristics of Indocalamus barbatus McClure. Journal of Nanjing Forestry University, 43(1), 54–60. 10.3969/j.ISSN.1000–2006. 201712013
  44. Pan, Y.–Wen, X.–Wu, Z.–Zhong, H.–Gao, G.–Gu, L.–Tian, X. (2019): Biomass Allocation & Accumulation Characteristics of Different Amphipodial Dwarf Bamboos. World Bamboo and Rattan, 17, 9–15. 10.13640 / j.cnki.wbr.2019.03.003
  45. Ranieri, E.–Tursi, A.–Giuliano, S.–Spagnolo, V.–Ranieri, A.C.–Petrella, A. (2020): Phytoextraction from Chromium-Contaminated Soil Using Moso Bamboo in Mediterranean Conditions. Water, Air, and Soil Pollution, 231(8).
  46. Sarwar, N.–Imran, M.–Shaheen, M.R.–Ishaque, W.–Kamran, M.A.–Matloob, A.–Rehim, A.–Hussain, S. (2017): Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710–721.
  47. Su, W.–Feng, H.–Fan, S.–Li, X.–Xu, Q. (2013): Distribution characteristics of soil heavy metals in Phyllostachys pubescens forest in lead-zinc mining area. Spectroscopy and Spectral Analysis, 33, 1877–1880.
  48. Wang, B.–Cao, B.–Cai, C. (2010): Effect of Heavy Metal Stress on Antioxidative Enzymes and Lipid Peroxidation in Two Dwarf Bamboos (Sasa auricoma and Arundinaria fortunei). World Bamboo and Rattan, 04, 15–19.
  49. Wang, Y.–Zhong, B.–Shafi, M.–Ma, J.–Guo, J.–Wu, J.–Ye, Z.–Liu, D.–Jin, H. (2019): Effects of biochar on growth, and heavy metals accumulation of moso bamboo (Phyllostachy pubescens), soil physical properties, and heavy metals solubility in soil. Chemosphere, 219, 510–516.
  50. Weber, O.–Scholz, R.W.–Bühlmann, R.–Grasmück, D. (2001): Risk perception of heavy metal soil contamination and attitudes toward decontamination strategies. Risk Analysis, 21(5), 967.
  51. Were, F.H.–Wafula, G.A.–Wairungu, S. (2017): Phytoremediation using bamboo to reduce the risk of chromium exposure from a contaminated tannery site in Kenya. Journal of Health and Pollution, 7(16), 12–25.
  52. Wu, Y.–Wu, D.–Wang, M.–Ying, G.–Chen, T.–Qu, H. (2016): Economic benefits and ecological restoration evaluation of the croprotation mode of covering Phyllostachys edulis - Dictyophora echinovolvata. South China Forestry Science, 44(3), 40–48.
  53. Xu, J.– Qin, H (2003). South bamboo north transplanting. World Bamboo and Rattan, 1, 27–31.
  54. Yang, M.–Xiao, X.Y.–Miao, X.F.–Guo, Z.H.–Wang, F.Y. (2012): Effect of amendments on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic, cadmium and lead. Transactions of Nonferrous Metals Society of China (English Edition), 22(6), 1462–1469.
  55. Yang, F. –Xu, Q. (2003): Changes of Soil Nutrients and Heavy Metal Contents in Phylloslachys praecox Forests with Different Cultivation History. Journal of Zhejiang Forestry College, 20, 0–3.
  56. Yen, T.M.–Lee, J.S. (2011): Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecology and Management, 261(6), 995–1002.
  57. Ying, Y.–Guo, J.–Wei, J.–Jiang, Q.–Xie, N. (2011): Effects of drought stress on physiological characteristics of Phyllostachys edulis seedlings. Chinese Journal of Ecology, 30, 262–266.
  58. Zhang, A.–Pang, Q.–Yan, X. (2013): Advances in salt- tolerance mechanisms of Suaeda plants. Acta Ecologica Sinica, 33, 3575–3583.
  59. Zhang, D.P.–Cai, C.J.–Fan, S.H.–Su, W.H. (2012): Effects of Pb2+, Cd2+ on germination and seedling early growth of moso bamboo (Phyllostachys edulis) seed. Forest Research, 25(4), 500–504.
  60. Zhang, J.– Zhang, G– Liu, Y– Huang, W (2006): Cytochemical Localization and Changes in Activity of Plasma Membrane Ca 2 + -ATPase in Young Grape (Vitis vinifera L. cv. Jingxiu) Plants During Cross Adaptation to Temperature Stresses. Scientia Agricultura Sinica, 39(8), 1617–1625.
  61. Zhang, X.–Zhong, B.–Shafi, M.–Guo, J.–Liu, C.–Guo, H.–Peng, D.–Wang, Y.–Liu, D. (2018): Effect of EDTA and citric acid on absorption of heavy metals and growth of Moso bamboo. Environmental Science and Pollution Research, 25(19), 18846–18852.
  62. Zhang, Y. (1997): Studies on the toxicity of heavy metals in barley (Hordeum vulgare). Acta Scientiae Circumstantiae, 17, 199–205.
  63. Zhang, Y.– Wang, L.– Chen, C.– Wang, K (2011): Research Progress in Response Mechanism of Plants to Adversity Stress. Acta Agriculturae Jiangxi, 23, 60–65.
  64. Zhang, Z.– Jian, G.– Cai, C. – Fan, S. (2011): Absorption and Distribution of Mineral Nutrients in Pleioblastus fortunei under Lead Stress. Scientia Silvae Sinicae, 47(1), 153–157.
  65. Zhao, L.–Xing, X.–Jiang, Z.–Yue, X.–Xue, L.–Gu, X. (2010): Study on the Drought Resistance of Four Dwarf Ornamental Bamboos. Forest Research, 23, 221–226.
  66. Zheng, S.–Wei, Y.–Gu, H.–Zhu, J.–Li, X.–Jiang, Z. (2011): Characteristics of Heavy Metals in Plants Growing on Cr Contaminated Area and Cr-Tolerant Plants Screening. Forest Research, 24, 205–211.
  67. Zhong,B.–Chen, J.R. –Shafi, M.–Guo, J.–Wang, Y.–Wu, J.–Ye, Z.–He, L.–Liu, D. (2017): Effect of lead (Pb) on antioxidation system and accumulation ability of Moso bamboo (Phyllostachys pubescens). Ecotoxicology and Environmental Safety, 138 (December2016),71–77.
  68. Zhou, G.–Meng, C.–Jiang, P.–Xu, Q. (2011): Review of Carbon Fixation in Bamboo Forests in China. Botanical Review, 77(3), 262–270.
  69. Zhuang, M.–Chen, S.–Li, Y.–Guo, Z.–Li, Y.–Yang, Q. (2011): Physiological Responses of Oligostachyum lubricum to the Elevated Atmospheric Ozone Concentration. Acta Bot.Boreal Occident,Sin, 31, 1360–1366.