Articles

Heat stress of cattle from embryonic phase until culling

Published:
June 5, 2023
Authors
View
Keywords
License

Copyright (c) 2023 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Baccouri, W., Mikó, E., & Komlósi, I. (2023). Heat stress of cattle from embryonic phase until culling. Acta Agraria Debreceniensis, 1, 11-22. https://doi.org/10.34101/actaagrar/1/12086
Received 2022-12-08
Accepted 2023-02-20
Published 2023-06-05
Abstract

Heat stress becomes a serious problem in the livestock sector as it affects cows' performance negatively. The objective of this paper review is to investigate the effects of heat stress during the different phases of the life cycle of cows; embryos, calves, heifers, and cows. Heat stress during early maternal gestation affects the ability of embryos to develop increasing the risk of abortion and early embryonic death. Heat stress during late maternal gestation affects the performance of calves and heifers later in their life, as it reduces growth performance, conducts physiological changes, impaired immunity, changes the behavior, and reduces the length and intensity of the estrus in heifers with decreasing in milk production in the first lactation. On the level of cows, milk quality and production, meat quality, and the final body weight decrease under hot temperatures. Heat stress decreases the conception rate, alters follicle growth, and estrous symptoms. Hormones secretion and physiological changes because of the heat stress conduct to impair the immunity system, and in oxidative stress and death in some cases. Same as for calves and heifers a change in the behavior of cows was detected in order to decrease their temperature.

References
  1. Ahmed, B.–Younas, U.–Asar, T.O.–Monteiro, A.–Hayen, M.J.–Tao, S.–Dahl, G.E. (2021): Maternal heat stress reduces body and organ growth in calves: Relationship to immune status. JDS communications, 2(5), 295–299. https://doi.org/10.3168/jdsc.2021-0098
  2. Al-Katanani, Y.M.–Hansen, P.J. (2002) : Induced thermotolerance in bovine two-cell embryos and the role of heat shock protein 70 in embryonic development. Molecular reproduction and development, 62(2), 174–180. https://doi.org/10.1002/mrd.10122
  3. Al-Katanani, Y.M.–Webb, D.W.–Hansen, P.J. (1999): Factors affecting seasonal variation in 90-day nonreturn rate to first service in lactating Holstein cows in a hot climate. Journal of Animal Science, 82(12), 2611–2616. https://doi.org/10.3168/jds.S0022-0302(99)75516-5
  4. Amundson, J.L.–Mader, T.L.–Rasby, R.J.–Hu, Q.S. (2005): Temperature and temperature–humidity index effects on pregnancy rate in beef cattle. In: Proceedings of 17th International Congress on Biometeorology. Deutscher Wetterdienst, Offenbach, Germany;
  5. Amundson, J.L.–Mader, T.L.–Rasby, R.J.–Hu, Q.S. (2006): Environmental effects on pregnancy rate in beef cattle. Journal of Animal Science, 84(12), 3415–3420. https://doi.org/10.2527/jas.2005-611
  6. Baccari, F.–Johnson, H.D.–Hahn, G.L. (1983): Environmental Heat Effects on Growth, Plasma T3, and Postheat Compensatory Effects on Holstein Calves. In Experimental Biology and Medicine (Vol. 173, Issue 3, pp. 312–318). SAGE Publications. https://doi.org/10.3181/00379727-173-41648
  7. Bach, A. (2012): Ruminant Nutrition Symposium: Optimizing Performance of the Offspring: nourishing and managing the dam and postnatal calf for optimal lactation, reproduction, and immunity. Journal of Animal Science, 90(6), 1835–1845. https://doi.org/10.2527/jas.2011-4516
  8. Badinga, L.–Thatcher, W.W.–Diaz, T.–Drost, M.–Wolfenson, D. (1993): Effect of environmental heat stress on follicular development and steroidogenesis in lactating Holstein cows. Theriogenology, 39(4), 797–810. https://doi.org/10.1016/0093-691x(93)90419-6
  9. Baumgard, L.H.–Rhoads, R.P. Jr. (2013): Effects of heat stress on postabsorptive metabolism and energetics. Annual Review of Animal Biosciences, 1(1), 311–337. https://doi.org/10.1146/annurev-animal-031412-103644
  10. Beede, D.K.–Collier, R.J. (1986): Potential nutritional strategies for intensively managed cattle during thermal stress. Journal of Animal Science, 62(2), 543–554. https://doi.org/10.2527/jas1986.622543x
  11. Berman, A.–Folman, Y.–Kaim, M.–Mamen, M.–Herz, Z.–Wolfenson, D.–Arieli, A.–Graber, Y. (1985): Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate. Journal of Dairy Science, 68(6), 1488–1495. https://doi.org/10.3168/jds.S0022-0302(85)80987-5
  12. Bernabucci, U.–Basiricò, L.–Morera, P.–Dipasquale, D.–Vitali, A.–Piccioli Cappelli, F.–Calamari, L. (2015): Effect of summer season on milk protein fractions in Holstein cows. Journal of Dairy Science, 98(3), 1815–1827. https://doi.org/10.3168/jds.2014-8788
  13. Bernabucci, U.–Biffani, S.–Buggiotti, L.–Vitali, A.–Lacetera, N.–Nardone, A. (2014): The effects of heat stress in Italian Holstein dairy cattle. Journal of dairy science, 97(1), 471–486. https://doi.org/10.3168/jds.2013-6611
  14. Bernabucci, U.–Lacetera, N.–Baumgard, L.H.–Rhoads, R.P.–Ronchi, B.–Nardone, A. (2010): Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal: an international journal of animal bioscience, 4(7), 1167–1183. https://doi.org/10.1017/S175173111000090X
  15. Bernabucci, U.–Ronchi, B.–Lacetera, N.–Nardone, A. (2002): Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. Journal of dairy science, 85(9), 2173–2179. https://doi.org/10.3168/jds.S0022-0302(02)74296-3
  16. Berthelot, X.–Paccard, P. (1990): Saison et reproduction chez la vache. Influence de l'environnement sur la reproduction. In: Association pour l'étude de la reproduction animale, Maisons-Alfort, 25 janvier 1990 A.E.R.A, Maisons-Alfort, G1-G12.
  17. Bertocchi, L.–Vitali, A.–Lacetera, N.–Nardone, A.–Varisco, G.–Bernabucci, U. (2014): Seasonal variations in the composition of Holstein cow's milk and temperature-humidity index relationship. Animal: an international journal of animal bioscience, 8(4), 667–674. https://doi.org/10.1017/S1751731114000032
  18. Bianca, W. (1958): The relation between respiratory rate and heart rate in the calf subjected to severe heat stress. The Journal of Agricultural Science, 51(3), 321–324. https://doi.org/10.1017/S0021859600035139
  19. Biggers, B.G.–Geisert, R.D.–Wetteman, R.P.–Buchanan, D.S. (1987): Effect of heat stress on early embryonic development in the beef cow. Journal of animal science, 64(5), 1512–1518. https://doi.org/10.2527/jas1987.6451512x
  20. Bocquier, F.–Bonnet, M.–Faulconnier, Y.–Guerre-Millo, M.–Martin, P.–Chilliard, Y. (1998): Effects of photoperiod and feeding level on perirenal adipose tissue metabolic activity and leptin synthesis in the ovariectomized ewe. Reproduction, nutrition, development, 38(5), 489–498. https://doi.org/10.1051/rnd:19980501
  21. Bolocan, E. (2009): Effects of heat stress on sexual behavior in heifers. Lucrări Științifice-Zootehnie și Biotehnologii, Universitatea de Științe Agricole și Medicină Veterinară a Banatului Timișoara, 42(1), 141–148.
  22. Broucek, J.–Kisac, P.–Uhrincat, M. (2009): Effect of hot temperatures on the hematological parameters, health and performance of calves. International journal of biometeorology, 53(2), 201–208. https://doi.org/10.1007/s00484-008-0204-1
  23. Bun, C.–Watanabe, Y.–Uenoyama, Y.–Inoue, N.–Ieda, N.–Matsuda, F.–Tsukamura, H.–Kuwahara, M.–Maeda, K.I.–Ohkura, S.–Pheng, V. (2018): Evaluation of heat stress response in crossbred dairy cows under tropical climate by analysis of heart rate variability. The Journal of veterinary medical science, 80(1), 181–185. https://doi.org/10.1292/jvms.17-0368
  24. Cavestany, D.–el-Wishy, A.B.–Foote, R.H. (1985): Effect of season and high environmental temperature on fertility of Holstein cattle. Journal of dairy science, 68(6), 1471–1478. https://doi.org/10.3168/jds.S0022-0302(85)80985-1
  25. Charmandari, E.–Tsigos, C.–Chrousos, G. (2005): Endocrinology of the stress response. Annual review of physiology, 67, 259–284. https://doi.org/10.1146/annurev.physiol.67.040403.120816
  26. Chauhan, S.S.–Celi, P.–Ponnampalam, E.N.–Leury, B.J.–Liu, F.–Dunshea, F.R. (2014): Antioxidant dynamics in the live animal and implications for ruminant health and product (meat/milk) quality: role of vitamin E and selenium. Animal Production Science, 54(10), 1525. https://doi.org/10.1071/an14334
  27. Christison, G.I.–Johnson, H.D. (1972): Cortisol turnover in heat-stressed cow. Journal of animal science, 35(5), 1005–1010. https://doi.org/10.2527/jas1972.3551005x
  28. Colditz, P.J.–Kellaway, R.C. (1972): The effect of diet and heat stress on feed intake, growth, and nitrogen metabolism in Friesian, F1 Brahman × Friesian, and Brahman heifers. Australian Journal of Agricultural Research, 23(4), 717. https://doi.org/10.1071/ar9720717
  29. Collier, R.J.–Dahl, G.E.–VanBaale, M.J. (2006): Major advances associated with environmental effects on dairy cattle. Journal of dairy science, 89(4), 1244–1253. https://doi.org/10.3168/jds.S00220302(06)72193-2
  30. Collier, R.J.–Doelger, S.G.–Head, H.H.–Thatcher, W.W.–Wilcox, C.J. (1982): Effects of heat stress during pregnancy on maternal hormone concentrations, calf birth weight and postpartum milk yield of Holstein cows. Journal of animal science, 54(2), 309–319. https://doi.org/10.2527/jas1982.542309x
  31. Dado-Senn, B.–Vega Acosta, L.–Torres Rivera, M.–Field, S.L.–Marrero, M.G.–Davidson, B.D.–Tao, S.–Fabris, T.F.–Ortiz-Colón, G.–Dahl, G.E.–Laporta, J. (2020): Pre- and postnatal heat stress abatement affects dairy calf thermoregulation and performance. Journal of dairy science, 103(5), 4822–4837. https://doi.org/10.3168/jds.2019-17926
  32. Dahl, G.E.–Tao, S.–Monteiro, A.P.A. (2016): Effects of late-gestation heat stress on immunity and performance of calves. Journal of Dairy Science, 99(4), 3193–3198. https://doi.org/10.3168/jds.2015-9990
  33. Das, R.–Sailo, L.–Verma, N.–Bharti, P.–Saikia, J.–Imtiwati,–Kumar, R. (2016): Impact of heat stress on health and performance of dairy animals: A review. Veterinary world, 9(3), 260–268. https://doi.org/10.14202/vetworld.2016.260-268
  34. De Rensis, F.–Scaramuzzi, R.J. (2003): Heat stress and seasonal effects on reproduction in the dairy cow--a review. Theriogenology, 60(6), 1139–1151. https://doi.org/10.1016/s0093-691x(03)00126-2
  35. de Vrijer, B.–Regnault, T.R.–Wilkening, R.B.–Meschia, G.–Battaglia, F.C. (2004): Placental uptake and transport of ACP, a neutral nonmetabolizable amino acid, in an ovine model of fetal growth restriction. American journal of physiology. Endocrinology and metabolism, 287(6), E1114–E1124. https://doi.org/10.1152/ajpendo.00259.2004
  36. Djelailia, H.–M'Hamdi, N.–Bouraoui, R.,–Najar, T. (2021): Effects of thermal stress on physiological state and hormone concentrations in Holstein cows under arid climatic conditions. S. Afr. J. Anim. Sci. 51. 452–459. https://doi.org/10.4314/sajas.v51i4.5.
  37. do Amaral, B.C.–Connor, E.E.–Tao, S.–Hayen, J.–Bubolz, J.–Dahl, G.E. (2010): Heat stress abatement during the dry period influences prolactin signaling in lymphocytes. Domestic animal endocrinology, 38(1), 38–45. https://doi.org/10.1016/j.domaniend.2009.07.005
  38. du Preez, J.H.–Hattingh, P.J.–Giesecke, W.H.–Eisenberg, B.E. (1990): Heat stress in dairy cattle and other livestock under southern African conditions. III. Monthly temperature-humidity index mean values and their significance in the performance of dairy cattle. The Onderstepoort journal of veterinary research, 57(4), 243–248.
  39. Ealy, A.D.–Drost, M.–Hansen, P.J. (1993): Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows. Journal of dairy science, 76(10), 2899–2905. https://doi.org/10.3168/jds.S0022-0302(93)77629-8
  40. Edwards, J.L.–Hansen, P.J. (1997): Differential responses of bovine oocytes and preimplantation embryos to heat shock. Molecular Reproduction and Development, 46(2), 138–145. https://doi.org/10.1002/(SICI)1098-2795(199702)46:2<138::AID-MRD4>3.0.CO;2-R
  41. Elvinger, F.–Natzke, R.P.–Hansen, P. J. (1992): Interactions of heat stress and bovine somatotropin affecting physiology and immunology of lactating cows. Journal of dairy science, 75(2), 449–462. https://doi.org/10.3168/jds.S0022-0302(92)77781-9
  42. Follenius, M.–Brandenberger, G.–Oyono, S.–Candas, V. (1982): Cortisol as a sensitive index of heat-intolerance. Physiology & Behavior, 29(3), 509–513. https://doi.org/10.1016/0031-9384(82)90274-8
  43. Gangwar, P.C.–Branton, C.–Evans, D.L. (1965): Reproductive and physiological responses of holstein heifers to controlled and natural climatic conditions. Journal of dairy science, 48, 222–227. https://doi.org/10.3168/jds.s0022-0302(65)88200-5
  44. Gantner, V.–Mijić, P.–Kuterovac, K.–Solić, D.–Gantner, R. (2011): Temperature-humidity index values and their significance on the daily production of dairy cattle. Mljekarstvo 2011;61:56–63.
  45. Gendelman, M.–Roth, Z. (2012): In vivo vs. in vitro models for studying the effects of elevated temperature on the GV-stage oocyte, subsequent developmental competence and gene expression. Animal Reproduction Science, 134(3–4), 125–134. https://doi.org/10.1016/j.anireprosci.2012.07.009
  46. Gorniak, T.–Meyer, U.–Südekum, K.H.–Dänicke, S. (2014): Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Archives of animal nutrition, 68(5), 358–369. https://doi.org/10.1080/1745039X.2014.950451
  47. Govindan, K.–Madiajagan, B.–Prathap, P.–Mallenahally Kusha, V.–Joy, A.–Payyanakkal Ravindranathan, A.–Veerasamy, S.–Raghavendra, B. (2017): Mitigation of the heat stress impact in livestock reproduction. In Theriogenology. InTech. https://doi.org/10.5772/intechopen.69091
  48. Guo, Z.–Gao, S.–Ouyang, J.–Ma, L.–Bu, D. (2021): Impacts of Heat Stress-Induced Oxidative Stress on the Milk Protein Biosynthesis of Dairy Cows. Animals: an open access journal from MDPI, 11(3), 726. https://doi.org/10.3390/ani11030726
  49. Hahn, G.L. (1999): Dynamic responses of cattle to thermal heat loads. Journal of animal science, 77 Suppl 2, 10–20. https://doi.org/10.2527/1997.77suppl_210x
  50. Hahn, G.L.–Becker, B.A. (1984). Assessing livestock stress. Agric. Eng. 65:15–17.
  51. Hansen, P.J.–Aréchiga, C.F. (1999) : Strategies for managing reproduction in the heat-stressed dairy cow. Journal of animal science, 77 Suppl 2, 36–50. https://doi.org/10.2527/1997.77suppl_236x
  52. Heinrichs, A.J.–Heinrichs, B.S.–Harel, O.–Rogers, G.W.–Place, N. T. (2005): A prospective study of calf factors affecting age, body size, and body condition score at first calving of holstein dairy heifers. Journal of Dairy Science, 88(8), 2828–2835. https://doi.org/10.3168/jds.S0022-0302(05)72963-5
  53. Herbut, P.–Angrecka, S.–Godyń, D.–Hoffmann, G. (2019): The physiological and productivity effects of heat stress in cattle – A review. Annals of Animal Science, 19(3), 579–593. https://doi.org/10.2478/aoas-2019-0011
  54. Hooley, R.D.–Findlay, J.K.–Stephenson, R.G. (1979): Effect of heat stress on plasma concentrations of prolactin and luteinizing hormone in ewes. Australian journal of biological sciences, 32(2), 231–235. https://doi.org/10.1071/bi9790231
  55. IPCC (Intergovermental Panel on Climate Change) Climate change (201: The physical science basis. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013), p. 1535
  56. Ji, Y.–Wu, Z.–Dai, Z.–Wang, X.–Li, J.–Wang, B.–Wu, G. (2017): Fetal and neonatal programming of postnatal growth and feed efficiency in swine. Journal of animal science and biotechnology, 8, 42. https://doi.org/10.1186/s40104-017-0173-5
  57. Ju, X.H.–Xu, H.J.–Yong, Y.H.–An, L.L.–Jiao, P.R.–Liao, M. (2014): Heat stress upregulation of Toll-like receptors 2/4 and acute inflammatory cytokines in peripheral blood mononuclear cell (PBMC) of Bama miniature pigs: an in vivo and in vitro study. Animal: an international journal of animal bioscience, 8(9), 1462–1468. https://doi.org/10.1017/S1751731114001268
  58. Kadzere, C.T.–Murphy, M.R.–Silanikove, N.–Maltz, E. (2002): Heat stress in lactating dairy cows: a review. Livestock Production Science, 77(1), 59–91. https://doi.org/10.1016/s0301-6226(01)00330-x
  59. Kamano, S.–Ikeda, S.–Sugimoto, M.–Kume, S. (2014): The effects of calcitonin on the development of and Ca2+ levels in heat-shocked bovine preimplantation embryos in vitro. The Journal of reproduction and development, 60(4), 317–323. https://doi.org/10.1262/jrd.2013-127
  60. Kelley, D.W.–Osborne, C.A.–Evermann, J.F.–Parish, S.M.–Gaskins, C.T. (1982): Effects of chronic heat and cold stressors on plasma immunoglobulin and mitogen-induced blastogenesis in calves. Journal of Dairy Science, 65(8), 1514–1528. https://doi.org/10.3168/jds.s0022-0302(82)82376-x
  61. Kibler, H.H.–Brody, S. (1950): Effects of temperature, 50°F to 105 °F and 50°F to 9°F on heat production and cardiorespiratory activities in Brahman, Jersey and Holstein cows. Environmental Physiology and Shelter Engineering Series XI, Research Bulletin 464, Missouri Agricultural Experiment Station, University of Missouri, Columbia, MO.
  62. Kim, W.S.–Lee, J.-S.–Jeon, S.W.–Peng, D.Q.–Kim, Y.S.–Bae, M.H.–Jo, Y.H.–Lee, H.G. (2018): Correlation between blood, physiological and behavioral parameters in beef calves under heat stress. Asian-Australasian Journal of Animal Sciences, 31(6), 919–925. https://doi.org/10.5713/ajas.17.0545
  63. Knapp, D.M.–Grummer, R.R. (1991): Response of lactating dairy cows to fat supplementation during heat stress. Journal of dairy science, 74(8), 2573–2579. https://doi.org/10.3168/jds.S0022-0302(91)78435-X
  64. Kovács, L.–Kézér, F.L.–Ruff, F.–Szenci, O.–Bakony, M.–Jurkovich, V. (2019): Effect of artificial shade on saliva cortisol concentrations of heat-stressed dairy calves. Domestic animal endocrinology, 66, 43–47. https://doi.org/10.1016/j.domaniend.2018.09.001
  65. Laporta, J.–Fabris, T.F.–Skibiel, A.L.–Powell, J.L.–Hayen, M.J.–Horvath, K.–Miller-Cushon, E.K.–Dahl, G.E. (2017): In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves. Journal of dairy science, 100(4), 2976–2984. https://doi.org/10.3168/jds.2016-11993
  66. Laporta, J.–Ferreira, F.C.–Ouellet, V.–Dado-Senn, B.–Almeida, A.K.–De Vries, A.–Dahl, G.E. (2020): Late-gestation heat stress impairs daughter and granddaughter lifetime performance. Journal of dairy science, 103(8), 7555–7568. https://doi.org/10.3168/jds.2020-18154
  67. López, E.–Mellado, M.–Martínez, A.M.–Véliz, F.G.–García, J.E.–de Santiago, A.–Carrillo, E. (2018): Stress-related hormonal alterations, growth and pelleted starter intake in pre-weaning Holstein calves in response to thermal stress. International journal of biometeorology, 62(4), 493–500. https://doi.org/10.1007/s00484-017-1458-2
  68. Madan, M.L.–Johnson, H.D. (1973): Environmental heat effects on bovine luteinizing hormone. Journal of dairy science, 56(11), 1420–1423. https://doi.org/10.3168/jds.S0022-0302(73)85376-7
  69. Marai, I.F.M.–Habeeb, A.A.–Daader, A.H.–Yousef, H.M. (1995): Effects of Egyptian subtropical summer conditions and the heat-stress alleviation technique of water spray and a diaphoretic on the growth and physiological functions of Friesian calves. Journal of Arid Environments, 30(2), 219–225. https://doi.org/10.1016/S0140-1963(05)80073-4
  70. Martin, S.W.–Schwabe, C.W.–Franti, C.E. (1975): Dairy calf mortality rate: influence of management and housing factors on calf mortality rate in Tulare County, California. American journal of veterinary research, 36(08), 1111–1114.
  71. Merlot, E.–Couret, D.–Otten, W. (2008): Prenatal stress, fetal imprinting and immunity. Brain, Behavior, and Immunity, 22(1), 42–51. https://doi.org/10.1016/j.bbi.2007.05.007
  72. Miller, J.K.–Brzezinska-Slebodzinska, E.–Madsen, F.C. (1993): Oxidative stress, antioxidants, and animal function. Journal of dairy science, 76(9), 2812–2823. https://doi.org/10.3168/jds.S0022-0302(93)77620-1
  73. Mitlöhner, F.M.–Galyean, M.L.–McGlone, J.J. (2002): Shade effects on performance, carcass traits, physiology, and behavior of heat-stressed feedlot heifers. Journal of animal science, 80(8), 2043–2050. https://doi.org/10.2527/2002.8082043x
  74. Mitlöhner, F.M.–Morrow, J.L.–Dailey, J.W.–Wilson, S.C.–Galyean, M.L.–Miller, M.F.–McGlone, J.J. (2001): Shade and water misting effects on behavior, physiology, performance, and carcass traits of heat-stressed feedlot cattle. Journal of animal science, 79(9), 2327–2335. https://doi.org/10.2527/2001.7992327x
  75. Monteiro, A.P.–Tao, S.–Thompson, I.M.–Dahl, G.E. (2014): Effect of heat stress during late gestation on immune function and growth performance of calves: isolation of altered colostral and calf factors. Journal of dairy science, 97(10), 6426–6439. https://doi.org/10.3168/jds.2013-7891
  76. Nabenishi, H.–Takagi, S.–Kamata, H.–Nishimoto, T.–Morita, T.–Ashizawa, K.–Tsuzuki, Y. (2012): The role of mitochondrial transition pores on bovine oocyte competence after heat stress, as determined by effects of cyclosporin A. Molecular reproduction and development, 79(1), 31–40. https://doi.org/10.1002/mrd.21401
  77. Nardone, A.–Lacetera, N.–Bernabucci, U.–Ronchi, B. (1997): Composition of colostrum from dairy heifers exposed to high air temperatures during late pregnancy and the early postpartum period. Journal of dairy science, 80(5), 838–844. https://doi.org/10.3168/jds.S0022-0302(97)76005-3
  78. Neuwirth, J.G.–Norton, J.K.–Rawlings, C.A.–Thompson, F.N.–Ware, G.O. (1979): Physiologic responses of dairy calves to environmental heat stress. International Journal of Biometeorology, 23(3), 243–254. https://doi.org/10.1007/bf01553775
  79. Nicoll, C.S.–Bern, H.A. (1972): On the actions of prolactin among the vertebrates: is there a common denominator? In 'Lactogenic Hormones'. (Eds G. E. W. Wolstenholme and J. Knight.) pp. 299–324. (Churchill Livingston: London.)
  80. Nonaka, I.–Takusari, N.–Tajima, K.–Suzuki, T.–Higuchi, K.–Kurihara, M. (2008): Effects of high environmental temperatures on physiological and nutritional status of prepubertal Holstein heifers. Livestock Science, 113(1), 14–23. https://doi.org/10.1016/j.livsci.2007.02.010
  81. NRC Nutrient Requirements of Dairy Cattle (7th ed.), National Academic Press, Washington, D. C. (2001), p. 242
  82. O’Driscoll, K.–Boyle, L.–Hanlon, A. (2008): A brief note on the validation of a system for recording lying behaviour in dairy cows. Applied Animal Behaviour Science, 111(1–2), 195–200. https://doi.org/10.1016/j.applanim.2007.05.014
  83. Orihuela A. (2000): Some factors affecting the behavioural manifestation of oestrus in cattle: a review. Applied animal behaviour science, 70(1), 1–16. https://doi.org/10.1016/s0168-1591(00)00139-8
  84. Ortega, M.S.–Rocha-Frigoni, N.A.S.–Mingoti, G.Z.–Roth, Z.–Hansen, P.J. (2016): Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L. Journal of Dairy Science, 99(11), 9152–9164. doi:10.3168/jds.2016-11501.
  85. Ouellet, V.–Laporta, J.–Dahl, G.E. (2020): Late gestation heat stress in dairy cows: Effects on dam and daughter. Theriogenology, 150, 471–479. https://doi.org/10.1016/j.theriogenology.2020.03.011
  86. Ouellet, V.–Negrao, J.–Skibiel, A.L.–Lantigua, V.A.–Fabris, T.F.–Marrero, M.G.–Dado-Senn, B.–Laporta, J.–Dahl, G.E. (2021): Endocrine Signals Altered by Heat Stress Impact Dairy Cow Mammary Cellular Processes at Different Stages of the Dry Period. Animals: an open access journal from MDPI, 11(2), 563. https://doi.org/10.3390/ani11020563
  87. Ozawa, M.–Tabayashi, D.–Latief, T.A.–Shimizu, T.–Oshima, I.–Kanai, Y. (2005): Alterations in follicular dynamics and steroidogenic abilities induced by heat stress during follicular recruitment in goats. Reproduction (Cambridge, England), 129(5), 621–630. https://doi.org/10.1530/rep.1.00456
  88. Pandey, P.–Hooda, O.K.–Kumar, S. (2017): Impact of heat stress and hypercapnia on physiological, hematological, and behavioral profile of Tharparkar and Karan Fries heifers. Veterinary world, 10(9), 1146–1155. https://doi.org/10.14202/vetworld.2017.1146-1155
  89. Panteghini M. (1990): Aspartate aminotransferase isoenzymes. Clinical biochemistry, 23(4), 311–319. https://doi.org/10.1016/0009-9120(90)80062-n
  90. Peterson, S.E.–Rezamand, P.–Williams, J.E.–Price, W.–Chahine, M.–McGuire, M.A. (2012): Effects of dietary betaine on milk yield and milk composition of mid-lactation Holstein dairy cows. Journal of dairy science, 95(11), 6557–6562. https://doi.org/10.3168/jds.2011-4808
  91. Piton, I. (2004): Canicule et reproduction chez la vache laitière. Résultats à partir d'une enquête dans des élevages du Rhône. Thèse de doctorat vétérinaire, école nationale vétérinaire de Lyon, 220 p.
  92. Place, N.T.–Heinrichs, A.J.–Erb, H.N. (1998): The effects of disease, management, and nutrition on average daily gain of dairy heifers from birth to four months. Journal of dairy science, 81(4), 1004–1009. https://doi.org/10.3168/jds.S0022-0302(98)75661-9
  93. Pollock, J.M.–Rowan, T.G.–Dixon, J.B.–Carter, S.D. (1994): Level of nutrition and age at weaning: effects on humoral immunity in young calves. The British journal of nutrition, 71(2), 239–248. https://doi.org/10.1079/bjn19940130
  94. Polsky, L.–von Keyserlingk, M.A.G. (2017): Invited review: Effects of heat stress on dairy cattle welfare. Journal of dairy science, 100(11), 8645–8657. https://doi.org/10.3168/jds.2017-12651
  95. Purwanto, B.P.–Nakamasu, F.–Yamamoto, S. (1993): Effect of environmental temperatures on heat production in dairy heifers differing in feed intake level. Asian-Australasian Journal of Animal Sciences, 6(2), 275–279. https://doi.org/10.5713/ajas.1993.275
  96. Putney, D.J.–Drost, M.–Thatcher, W.W. (1988): Embryonic development in superovulated dairy cattle exposed to elevated ambient temperatures between Days 1 to 7 post insemination. Theriogenology, 30(2), 195–209. https://doi.org/10.1016/0093-691x(88)90169-0
  97. Putney, D.J.–Drost, M.–Thatcher, W.W. (1989): Influence of summer heat stress on pregnancy rates of lactating dairy cattle following embryo transfer or artificial insemination. Theriogenology, 31(4), 765–778. https://doi.org/10.1016/0093-691x(89)90022-8
  98. Rauba, J.–Heins, B.J.–Chester-Jones, H.–Diaz, H.L.–Ziegler, D.–Linn, J.–Broadwater, N. (2019): Relationships between protein and energy consumed from milk replacer and starter and calf growth and first-lactation production of Holstein dairy cows. Journal of dairy science, 102(1), 301–310. https://doi.org/10.3168/jds.2018-15074
  99. Ravagnolo, O.–Misztal, I.–Hoogenboom, G. (2000): Genetic Component of Heat Stress in Dairy Cattle, Development of Heat Index Function. Journal of dairy science, 83(9), 2120–2125. https://doi.org/10.3168/jds.S0022-0302(00)75094-6
  100. Renaudeau, D.–Collin, A.–Yahav, S.–Basilio, V.–Gourdine, J.L.–Collier, R.J. (2012): Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal: an international journal of animal bioscience, 6(5), 707–728. https://doi.org/10.1017/S1751731111002448
  101. Ronchi, B.–Stradaioli, G.–Supplizi, A.V.–Bernabucci, U.–Lacetera, N.–Accorsi, P.A.–Nardone, A.–Seren, E. (2001): Influence of heat stress or feed restriction on plasma progesterone, oestradiol-17β, LH, FSH, prolactin and cortisol in Holstein heifers. Livestock Production Science, 68, 231–241. https://doi.org/10.1016/S0301-6226(00)00232-3
  102. Rosenkrans, C.–Jr, Banks, A.–Reiter, S.–Looper, M. (2010): Calving traits of crossbred Brahman cows are associated with Heat Shock Protein 70 genetic polymorphisms. Animal reproduction science, 119(3-4), 178–182. https://doi.org/10.1016/j.anireprosci.2010.02.005
  103. Rübsamen, K.–Hales, J.R.S. (1985): Circulatory adjustment of heat-stressed livestock, in Stress physiology in livestocj. Basic principles, 1, edited by M.K. Yousef. Boca Raton, Florida: CRC Press: 143–154.
  104. Sakatani, M.–Alvarez, N.V.–Takahashi, M.–Hansen, P.J. (2012): Consequences of physiological heat shock beginning at the zygote stage on embryonic development and expression of stress response genes in cattle. Journal of dairy science, 95(6), 3080–3091. https://doi.org/10.3168/jds.2011-4986
  105. Sakatani, M.–Bonilla, L.–Dobbs, K.B.–Block, J.–Ozawa, M.–Shanker, S.–Yao, J.–Hansen, P.J. (2013): Changes in the transcriptome of morula-stage bovine embryos caused by heat shock: relationship to developmental acquisition of thermotolerance. Reproductive biology and endocrinology: RB&E, 11, 3. https://doi.org/10.1186/1477-7827-11-3
  106. Sakatani, M.–Kobayashi, S.–Takahashi, M. (2004): Effects of heat shock on in vitro development and intracellular oxidative state of bovine preimplantation embryos. Molecular reproduction and development, 67(1), 77–82. https://doi.org/10.1002/mrd.20014
  107. Salah, M.S.–AlShaikh, M.A.–Al-Saiadi, M.Y.–Mogawer, H.H. (1995): Effect of prolactin inhibition on thermoregulation, water and food intakes in heat-stressed fat-tailed male lambs. In Animal Science (Vol. 60, Issue 1, pp. 87–91). Cambridge University Press (CUP). https://doi.org/10.1017/s1357729800008171
  108. Sanders, A.H.–Shearer, J.K.–De Vries, A. (2009): Seasonal incidence of lameness and risk factors associated with thin soles, white line disease, ulcers, and sole punctures in dairy cattle. Journal of dairy science, 92(7), 3165–3174. https://doi.org/10.3168/jds.2008-1799
  109. Sartori, R.–Sartor-Bergfelt, R.–Mertens, S.A.–Guenther, J.N.–Parrish, J.J.–Wiltbank, M.C. (2002): Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter. Journal of dairy science, 85(11), 2803–2812. https://doi.org/10.3168/jds.S0022-0302(02)74367-1
  110. SCAHAW (Scientific Committee on Animal Health and Animal Welfare) (2001): The welfare of cattle kept for beef production. European Commission, Health and Consumer Protection, Directorate C – Scientific Health Opinions, Unit C2 – Management of scientific committees. Sanco.C.2/AH/R22/2000. Brussels (Belgium): European Commission. Available from http://orgprints.org/00000742
  111. Schütz, K.E.–Rogers, A.R.–Cox, N.R.–Webster, J.–R.–Tucker, C.B. (2011): Dairy cattle prefer shade over sprinklers: effects on behavior and physiology. Journal of dairy science, 94(1), 273–283. https://doi.org/10.3168/jds.2010-3608
  112. Shearer, J.K.–Beede, D.K. (1990): Thermoregulation and physiological responses of dairy cattle in hot weather. Agri-practice, 11(4), 5–17.
  113. Shultz, T.A. (1984): Weather and shade effects on cow corral activities. Journal of Dairy Science, 67(4), 868–873. https://doi.org/10.3168/jds.S0022-0302(84)81379-X
  114. Sigdel, A.–Liu, L.–Abdollahi-Arpanahi, R.–Aguilar, I.–Peñagaricano, F. (2020): Genetic dissection of reproductive performance of dairy cows under heat stress. Animal genetics, 51(4), 511–520. https://doi.org/10.1111/age.12943
  115. Silanikove, N. (2000): Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science, 67(1–2), 1–18. https://doi.org/10.1016/s0301-6226(00)00162-7
  116. Soriani, N.–Panella, G.–Calamari, L. (2013): Rumination time during the summer season and its relationships with metabolic conditions and milk production. Journal of dairy science, 96(8), 5082–5094. https://doi.org/10.3168/jds.2013-6620
  117. Stott, G.H.–Wiersma, F.–Menefee, B.E.–Radwanski, F.R. (1976): Influence of environment on passive immunity in calves. Journal of dairy science, 59(7), 1306–1311. https://doi.org/10.3168/jds.S0022-0302(76)84360-3
  118. St-Pierre, N.R.–Cobanov, B.–Schnitkey, G. (2003): Economic Losses from Heat Stress by US Livestock Industries. In Journal of Dairy Science (Vol. 86, pp. E52–E77). American Dairy Science Association. https://doi.org/10.3168/jds.s0022-0302(03)74040-5
  119. Strong, R.A.–Silva, E.B.–Cheng, H.W.–Eicher, S.D. (2015): Acute brief heat stress in late gestation alters neonatal calf innate immune functions. Journal of dairy science, 98(11), 7771–7783. https://doi.org/10.3168/jds.2015-9591
  120. Stull, C.L.–McV Messam, L.L.–Collar, C.A.–Peterson, N.G.–Castillo, A.R.–Reed, B.A.–Andersen, K.L.–VerBoort, W.R. (2008): Precipitation and temperature effects on mortality and lactation parameters of dairy cattle in California. Journal of dairy science, 91(12), 4579–4591. https://doi.org/10.3168/jds.2008-1215
  121. Tao, S.–Dahl, G.E. (2013): Invited review: heat stress effects during late gestation on dry cows and their calves. Journal of dairy science, 96(7), 4079–4093. https://doi.org/10.3168/jds.2012-6278
  122. Tao, S.–Monteiro, A.P.–Thompson, I.M.–Hayen, M.J.–Dahl, G.E. (2012): Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. Journal of dairy science, 95(12), 7128–7136. https://doi.org/10.3168/jds.2012-5697
  123. Thompson, I.M.–Tao, S.–Branen, J.–Ealy, A.D.–Dahl, G.E. (2013): Environmental regulation of pregnancy-specific protein B concentrations during late pregnancy in dairy cattle. Journal of Animal Science, 91(1), 168–173. https://doi.org/10.2527/jas.2012-5730
  124. Thornton, P.K.–van de Steeg, J.–Notenbaert, A.–Herrero, M. (2009): The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agricultural Systems, 101(3), 113–127. https://doi.org/10.1016/j.agsy.2009.05.002
  125. Tough, D.F.–Sun, S.–Sprent, J. (1997): T cell stimulation in vivo by lipopolysaccharide (LPS). The Journal of experimental medicine, 185(12), 2089–2094. https://doi.org/10.1084/jem.185.12.2089
  126. Tsai,Y.C.–Castillo, L.S.–Hardison, W.A.–Payne, W.J.A. (1967): Effect of Dietary Fiber Level on Lactating Dairy Cows in the Humid Tropics, J. Dairy. Sci, Volume 50, Issue 7, 1967, Pages 1126-1129, ISSN 0022-0302,
  127. Turk, R.–Podpečan, O.–Mrkun, J.–Flegar-Meštrić, Z.–Perkov, S.–Zrimšek, P. (2015): The Effect of Seasonal Thermal Stress on Lipid Mobilisation, Antioxidant Status and Reproductive Performance in Dairy Cows. Reproduction in domestic animals = Zuchthygiene, 50(4), 595–603. https://doi.org/10.1111/rda.12534
  128. Vitali, A.–Segnalini, M.–Bertocchi, L.–Bernabucci, U.–Nardone, A.–Lacetera, N. (2009): Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows. Journal of dairy science, 92(8), 3781–3790. https://doi.org/10.3168/jds.2009-2127
  129. Vizzotto, E.F.–Fischer, V.–Thaler Neto, A.–Abreu, A.S.–Stumpf, M.T.–Werncke, D.–Schmidt, F.A.–McManus, C.M. (2015): Access to shade changes behavioral and physiological attributes of dairy cows during the hot season in the subtropics. Animal : an international journal of animal bioscience, 9(9), 1559–1566. https://doi.org/10.1017/S1751731115000877
  130. Wallace, J.M.–Bourke, D.A.–Aitken, R.P.–Leitch, N.–Hay, W.W. Jr. (2002): Blood flows and nutrient uptakes in growth-restricted pregnancies induced by overnourishing adolescent sheep. America journal of physiology. Regulatory, integrative and comparative physiology, 282(4), R1027–R1036. https://doi.org/10.1152/ajpregu.00465.2001
  131. West, J.W. (2003): Effects of heat-stress on production in dairy cattle. Journal of dairy science, 86(6), 2131–2144. https://doi.org/10.3168/jds.S0022-0302(03)73803-X
  132. Wheelock, J.B.–Rhoads, R.P.–Vanbaale, M.J.–Sanders, S.R.–Baumgard, L.H. (2010): Effects of heat stress on energetic metabolism in lactating Holstein cows. Journal of dairy science, 93(2), 644–655. https://doi.org/10.3168/jds.2009-2295
  133. Wiedmeier, R.D.–Young, A. J.–Schmidt P.R. (2006): Watch the drinking water quality of calves reared in individual hutches. Assessed Dec. 2, 2022. https://digitalcommons.usu.edu/extension_curall/1412/
  134. Wise, M.E.–Rodriguez, R.E.–Armstrong, D.V.–Huber, J.T.–Wiersma, F.–Hunter, R. (1988): Fertility and hormonal responses to temporary relief of heat stress in lactating dairy cows. Theriogenology, 29(5), 1027–1035. https://doi.org/10.1016/s0093-691x(88)80026-8
  135. Wolfenson, D.–Roth, Z.–Meidan, R. (2000): Impaired reproduction in heat-stressed cattle: basic and applied aspects. Animal reproduction science, 60–61, 535–547. https://doi.org/10.1016/s0378-4320(00)00102-0
  136. Yazdi, M.H.–Mirzaei-Alamouti, H.R.–Amanlou, H.–Mahjoubi, E.–Nabipour, A.–Aghaziarati, N.–Baumgard, L.H. (2016) : Effects of heat stress on metabolism, digestibility, and rumen epithelial characteristics in growing Holstein calves. Journal of animal science, 94(1), 77–89. https://doi.org/10.2527/jas.2015-9364