Search



Show Advanced search options Hide Advanced search options
Spatial environment analisys of the bioenergy production and utilization
Published December 16, 2012
235-240

The backwardness of the rural areas compared to the cities poses a problem all over Europe. Rural development and the reduction of differences between the development levels of the regions have expressed roles among the programs of the European Union. Member States are even entitled to subsidisation, they just need to manage subsidies economica...lly. In Hungary, a relatively small amount of the population lives in the capital, more than 80% of Hungarians live in rural cities or villages. The opposition between the countryside and the cities is rather intensified and the symbiotic correlation would need to be restored. Many people migrate from the countryside, especially youngsters, as they have no opportunities to find any job. This phenomenon poses big risks because getting a job is usually difficult everywhere and because fitting into a new environment always involves a lot of difficulties. Also from the aspect of the national economy, migration from the rural areas to the cities is a problem. The state budget will face significant excess costs if someone moves from a village to the city. It could cause unpredictable consequences if people leave the villages, as the maintenance and development of the village living space will face a hopeless situation.
Non-renewable energies are restricted and they will not be accessible after reaching a certain limit. People’s everyday activities and the functioning of the economy presupposes the availabilty of the necessary amount of energy. In the future, solution that provide the longterm stability of energy for the world will become increasingly necessary. There is a huge potential in bioenergy, more specifically in biomass. The building of biomass plants and putting them into operation creates jobs in the rural spatial environments. A locally available resource that can help in creating the energy safety of the country and the reduction of the dependence on import. The production of energy crops or the crops whose purpose of use is energy could help in strengthening the multifunctional character of agriculture and it can represent a source of income for those living off of agriculture under the current uncertain conditions.

Show full abstract
38
70
Changes in weed flora of basket willow (Salix viminalis L.) under different soil nutrient supply
Published November 10, 2010
116-120

The world is in a continuous progress, as a result of which energy consumption and with this the release of gases with adverse impact show rapid increase. As a result of the survey conducted by the International Energy Agency, if the major economic powers do not initiate a change in their energy policy, the increase of energy consumption may as... well reach 40 % by 2030. This increased energy demand is getting more and more difficult to fulfill with the fossil energy resources, which is to lead to an increasing significance of renewable energy resources. In Hungary, these energy resources are the best to provide with biomass growth. Biomass growth for energetic purpose can mostly be provided by energy plants, out of which “energy willow” (Salix viminalis L.) is outstanding with its high yield and with its excellent burning technology characteristics of its timber. The willow’s cropping technology is being established in our country. One of our tasks is to work out an adequate weed control plan. The professional and safe use of herbicides can increase the success of production. In our paper, we discuss the weed flora data collected on  treatments applied in the different fertilizer and compost. We started our survey in 2010. We examined twelve different fertilizer and compost treated areas. The dominant weeds were: Amaranthus retroflexus, Chenopodium album, Echinochloa crus-galli among annuals; Cirsium arvense and Agropyron repens among the perennials. 

Show full abstract
16
28
Comparative analysis of certain soil microbiological characteristics of the carbon cycle
Published March 23, 2016
137-141

In our researches, we examine the soil microbial parameters related to the carbon cycle. In this study, we compare the changes of microbial biomass carbon (MBC) and the soil CO2 production in soil samples which were taken in spring and autumn. The 30 years old long-term experiment of Debrecen-Látókép is continued in our experiment...s. The long-term fertilization experiment was set in 1983, and our sample was taken in spring 2014. The examinations of soil respiration processes and factors that influence soil respiration are required in optimal management. In our study, we interested to know how the growing levels of fertilization influence the soil respiration and microbial biomass carbon under non-irrigated and irrigated conditions in maize mono, bi, and triculture.

Show full abstract
58
67
Assessment of energy generated by biogas production in the educational industrial unit of the University of Szeged, Faculty of Agriculture, with special regard to biomass originating from agriculture and the food industry
Published July 16, 2007
137-140

The importance of waste treatment is increasing. Environmental aims are the main driving force. Stricter regulations for landfills lead to the development of alternative treatment methods for waste. For agro-mechanical research, wastes from animal rearing and the food industry, secondary-tertiary biomass, is of deep concern. Available technolog...y is versatile and relatively simple to use as a reliable and effective means of producing a gaseous fuel from various organic waste. The most common application has been the digestion of animal dung, agricultural, and food-industrial waste. This was studied by our department in our pilot farm of our Faculty. The 50-dairy cow, family sized model farm was built in the summer of 1991, as a result of a Dutch – Hungarian cooperation, on the property of the Faculty. The new pig farm, with 30 sows, and the new goat farm, with 100 nannies, was given to the Faculty on 25 April 2001. On the basis of livestock data, the annual dung production and the producible energy were determinate. The energy was calculated by biogas production coefficients in literature.

Show full abstract
17
24
Soil Biological Activity within Integrated and Ecological Management of Soil
Published May 12, 2002
47-52

The effects of the integrated (IS) and ecological (ES) management of soil on chosen parameters of soil biological activity were investigated in the period 1999-2000. The following characteristics were determined: biomass of microorganisms (Cmic), dehydrogenase activity (DHA), an amount of potentially mineralizable nitrogen (Nbiol), and nitrific...ation intensity. Soil samples were collected from a stationary field experiment established in 1990 on gley brown soil at the Experimental Station of Slovak Agricultural University, Nitra. For each field with a different crop rotations two fertilization treatments were selected: (a) no fertilization and (b) use of manure for silage maize and, within IS, also mineral fertilizers. There was a statistically significant difference at α = 0.05 in the amount of biologically released nitrogen (Nbiol) between both systems and in the nitrification intensity in favour of ES. A higher amount of microbial biomass (Cmic) was noted for ES but without statistical significance. Cultivated crops and the timing of soil sampling were found to have the greatest effect on all the parameters observed in individual experimental years and within the two systems of soil management.

Show full abstract
23
18
Energy forests or vineyards?
Published October 5, 2010
237-240

This paper primarily aims at giving an introduction to an alternative opportunity for vineyards owners many of whom have come to a
decision about elimination of their vineyards. The paper is focusing on the Mátra wine-region as a study area, which is the largest mountain
wine region in Hungary where more than one third of supported clear...ing of vineyards have been implemented in the last few years. The
abandoning of vineyards is explicable in more than one way such as very small average size of land or the increasing mean age of owners
etc. The fundamental reason is the chronic doubtfulness of the grape and wine market and the low level of overall profitability of production.
Grape production has a long tradition in this region, thus the disappearance of vineyards caused serious problems in land use through the
absolute lack of plans for the future. The popularity of biomass production in the press and the biofuel resultant from vine stocks raise
interest for short rotation forestry within a group of farmers. Short rotation forestry offers a new chance for some farmers to cut oneself adrift
from the harmful effects of the market of agricultural products.

Show full abstract
12
4
Study of factors controlling the amount of 0.01 M CaCl2 extractable Norg fraction
Published September 5, 2018
437-449
The use of new methods describing the “readily available” nutrient content of the soil is spreading on a global scale. The 0.01 M CaCl2 extractant is a dilute salt solution in which the easily soluble inorganic (nitrate-N and ammonium-N) and organic N fractions, P, K and micronutrients are also measurable. The 0.01 M CaCl2 has been tested... in the University of Debrecen, Institute of Agricultural Chemistry and Soil Sciences since the 90’s. The results of the researches related to organic N fraction, performed in the last decades, and the results of the present study (originating from the long-term experiment of Karcag, 2007–2009) can be concluded as follows:
The measurement of easily soluble and oxidizable organic nitrogen (Norg), besides inorganic fractions, could improve the nutrient management.
The amount of the Norg fraction is determined by the soil conditions, therefore it is considered to be a site-specific parameter.
Management practices and cropyear affect the amount of Norg as well. The present research confirmed that, the effect of fertilization on the amount of Norg can be explained by the changing of the yield (related to total biomass production), while the effect of cropyear is related to the differences in mineralization circumstances and yield as well.
The measurement of the Norg fraction is increases the accuracy of N-supply, therefore it could prevent the environmentally harmful excess N application as well.
Show full abstract
108
64
Investigation of Potato (Solanum tuberosum L.) Salt Tolerance and Callus Induction in vitro
Published March 4, 2005
51-55

Potato production plays an important role in Hungary and the other countries of Europe. Consumption of potato products has increased to a large extent during the past several years. We can satisfy market demands with high quality and virus-free varieties.
Results of potato production depend on tolerance/resistance to abiotic stresses. In man...y cases, increased concentration of NaCl causes yield loss. Selection of salt tolerant varieties proved to be a difficult problem. Nowadays, the salt tolerance of potato varieties can be determined by cell/tissue/ protoplast techniques. Somaclonal variation provides a great potential for selection of lines resistant to salt stress. In vitro shoots and callus, derived plantlets selected for salt tolerance/resistance provide material for micropropagation.
In vitro shoot development of potato (Solanum tuberosum L. cv. Kuroda) was investigated under salt stress (40 mM, 80 mM, 120 mM NaCl) conditions. Shoot heights of plantlets cultured under salt conditions were lower than the control through the investigation. However, the shoot development of plantlets originated from in vitro meristems was almost at the same level as the control under 40 mM NaCl concentration.
There was no significant difference in the in vitro biomass production between control and treatment with 40 mM NaCl concentration. We measured a significant decrease in dry-matter mass under 120 mM NaCl concentration. There is a need for more investigation of different genotypes and for a conclusion as to whether in vitro tolerance could occur under in vivo circumstances in plants originated from somaclones as well.
Under in vitro conditions, we investigated shoot and leaf callus initiation using different culture media with different 2,4-D concentrations. Under dark conditions, callus induction of shoot/leaf decreased as the 2,4-D concentrations increased.
In light conditions, there was a little callus induction, while callus initiation from the shoot from 5 μM to 12 μM 2,4-D concentration showed a significant increase

Show full abstract
25
24
Renewable energy resources in the EU (Policy scenario)
Published February 10, 2013
143-146

...5); font-variant-ligatures: normal; font-variant-caps: normal; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">The use of renewable energies has a long past, even though its share of the total energy use is rather low in European terms. However, the tendencies are definitely favourable which is further strengthened by the dedication of the European Union to sustainable development and combat against climate change. The European Union is on the right track in achieving its goal which is to be able to cover 20% its energy need from renewable energy resources by 2020. The increased use of wind, solar, water, tidal, geothermal and biomass energy will reduce the energy import dependence of the European Union and it will stimulate innovation.

Show full abstract
54
89
Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
Published November 3, 2010
121-126

Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop product...ion for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
On the basis of results the following can be stated: 
1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.

Show full abstract
17
25
Modelling forestation alternatives
Published February 17, 2015
35-41

 

Agroforestry systems are part of the history of the European Union rural landscapes, but the regional increase of size of agricultural parcels had a significant effect on European land use in the 20th century, thereby it has radically reduced the coverage of natural forest. However, this cause conflicts between interest of agricu...ltural and forestry sectors. The agroforestry land uses could be a solution of this conflict management. One real – ecological – problem with the remnant forests and new forest plantation is the partly missing of network function without connecting ecological green corridors, the other problem is verifiability for the agroforestry payment system, monitoring the arable lands and plantations.

Remote sensing methods are currently used to supervise European Union payments. Nowadays, next to use satellite imagery the airborne hyperspectral and LiDAR (Light Detection And Ranging) remote sensing technologies are becoming more widespread use for nature, environmental, forest, agriculture protection, conservation and monitoring and it is an effective tool for monitoring biomass production.

In this Hungarian case study we made a Spatial Decision Support System (SDSS) to create agroforestry site selection model. The aim of model building was to ensure the continuity of ecological green corridors, maintain the appropriate land use of regional endowments. The investigation tool was the more widely used hyperspectral and airborne LiDAR remote sensing technologies which can provide appropriate data acquisition and data processing tools to build a decision support system.

Show full abstract
64
78
Nutrient Uptake of Miscanthus in vitro Cultures
Published May 12, 2002
23-24

The large biomass production and the low necessary input fertilizer make Miscanthus an interesting, potential non-food crop with broad applications, e.g. for fuel and energy, for thatching, fiber production, for the paper and car industries, as well as for ethanol production.
Axillary buds of Miscanthus x giganteus were placed on a shoot ind...ucing nutrient solution (modified Murashige and Skoog, 1962), basic medium supplemented with 0,3 mg l-1 6-Benzylaminopurin. After 40 days of culturing, the axillary buds produced three times more shoots than could normally be harvested. The nutrient content (N, P, K, Ca, Mg) was measured several times during culturing. The results showed that, after 35 days, nitrogen and phosphate were nearly completely taken up. From that time, shoot growth was not observed.
After shoot propagation, the plants were transfered into a nutrient solution for root formation (modified Murashige and Skoog, 1962), basic medium supplemented with 0,5 mg l-1 Indole- 3-Butyric acid, and could be potted in soil after about 14 days.

Show full abstract
20
21
Some basic problems concerning world animal production at the beginning of the XXI century
Published November 13, 2012
77-80

The author summarizes the main new challenges facing animal agriculture: growing GDP in many countries increasing animal protein demand, bioenergy industry as a new player using potential food or feedstuffs, increasing demand, Growing water and land scarcity, weaking the position of plant agriculture, feed production. Forecasts are summarized r...egarding the magnitude of meat consumption increases, and the possible plant biomass quantities required additionally in the next 20 years to cover the needs of food, feed and biofuel on a global scale.
Efficiencies of various animal production sectors, poultry, pork, beef, mutton meat, milk and eggs and their environmental footprints are compared, summarizing the most important research  results concerning UK, USA, OECD evaluations. Intensive systems using highly productive plant and animal population will play an even more important role in the future especially in poultry, pig, milk and aquaculture production system being efficient users of resources (feed, water, land) and the environmental foot print is smaller per unit product.

Show full abstract
45
50
The use of renewable resources is an opportunity and an obligation
Published February 25, 2014
13-17

The renewable energy sources could be used in energy production, while no or only very slightly emit harmful substances to the environment. The solar, wind, hydropower, biomass and heat rational utilization of land contributes to greenhouse gas emissions.
Renewable energy sources also reduces the dependence on fossil fuels, thus contributing... to increase security of supply. The creation of local jobs to strengthen the area's population retaining ability.

Show full abstract
57
62
The effect of different herbicide on the number and activity of living microorganisms in soil
Published May 23, 2006
76-82

Sustainable plant growth, considering the difficulties of weed elimination, cannot be effective without the application of herbicides. However, these chemicals have enormous ecological implications, including effects on the microbiological communities of soils. It is advisable to use herbicides that have minimal secondary effects on the environ...ment and soil-living microorganisms. In contrast, herbicides with prolonged growth stimulating or inhibiting effects are not suitable, because both types have strong influences on the number and activity of bacteria, thus causing changes in the ecological equilibrium.
Preceding small plot experiments, laboratory tests were carried out to study the effect of herbicides used in maize cultures on the number of bacteria and growth of microscopic fungi.
Substances that were observed to have stronger influences were applied in small plot experiments set up in the experimental garden of the Department of Plant Protection of the University of Debrecen. We studied the effects of four herbicides (Acenit A88EC, Frontier 900 EC, Merlin SC and Wing EC) on the microbiological properties of the soil. These herbicides were used in different concentrations in maize culture, and we investigated the effects in different soil layers.
In the laboratory experiments, we determined the total number of bacteria and microscopic fungi and examined the growth of Aspergillus niger, Trichoderma sp. and Fusarium oxysporum on peptone-glucose agar containing herbicides.
During the small plot experiments, soil samples were collected 3 times a year from 2-20 cm depth. The total numbers of bacteria and microscopic fungi were determined by plate dilution method, while the method of most probable number (Pochon method) was used to determine the numbers of nitrifying bacteria and cellulose decomposing bacteria. To evaluate the microbiological activity of the soil samples we measured carbon-dioxide release (after 10 days incubation), nitrate production (after 14 days incubation) and the concentration of C and N in the biomass.
We can summarize our results as follows:
• In laboratory experiments, herbicides caused a decrease in the number of bacteria and inhibited the growth of microscopic fungi.
• Frontier 900 EC and Acenit A 880 EC had the strongest inhibiting effect on microorganisms.
• In small plot experiments, herbicide treatment decreased the total number of bacteria and microscopic fungi.
• Herbicides caused a significant increase in the number of nitrifying and cellulose decomposing bacteria.
• Different herbicides containing the same active compound had similar influences on soil microoorganisms.
• A significant increase was observed in the physiological processes of tolerant microorganisms surviving the effects of herbicides

Show full abstract
19
16
Significance of biogas production in Hungary
Published February 10, 2013
127-129

...5); font-variant-ligatures: normal; font-variant-caps: normal; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">It is known that the quantity of fossil energy sources are rapidly reducing, therefore it is necessary to determine a new direction which has to point directly to renewable energy sources. Increasingly comes into view the agriculture’s energy producing nature next to it’s traditional food producing one. The enviromental protection is connected to the energy production by the ultilization of biomass for energy purposes, within the biogas production has an emphasized importance. Quasi every organic material can be used in biogas production, such as: food processing by-products, manure, sewage sludge, hoousehold waste.

Show full abstract
52
48
Evaluation some important microbiological parameters of the carbon cycle in chernozem soils profiles
Published October 24, 2016
33-39

Some chemical and microbiological properties of the carbon cycle were investigated in three chernozem soil profiles. The soil profiles originated from a long term fertilization experiment (potato) of the University of Debrecen, Látókép, Kryvyi Rig Botanic Garden (grassland) and a large-scale farm (sunflower) of Ukraine. The results of the or...ganic C-content, total number of bacteria, microscopical fungi, cellulose decomposing bacteria, CO2-production, microbial biomass carbon and saccharase and dehydrogenase activities were compared and evaluated with the help of correlation analyses. Close correlation was found between the organic carbon content and the number of microscopical fungi,, saccharase and dehydrogenase enzymes’ activities, as well as close correlation was found between the dehydrogenase activity and microbial biomass-C and saccharase activity.

Show full abstract
67
66
Industrial Utilization of Grasses
Published May 11, 2003
131-134

The Agricultural Research and Development Institute P.U.C., Szarvas – realizing the importance of using the biomass in a number of ways – was one of the first in Europe, who began the breeding of grasses suitable for industrial utilization. The possible areas of using the energygrass – which could be called industrial grass – are the fo...llowing:
– Energetical use
– Paper industry use
– Utilization as an industrial fibrematerial
– Use for feeding
The aim of the breeding programme: developing the kinds of grass, which yields big drymaterial mass and suitable for industrial utilization. These kind of grass, taking soil-utilization, economicality and environmental protection, offer and ensure new marketing perspectives and employment facilities for the disadvantageous areas.

Show full abstract
19
24
Objectives of the EU in the field of biomass use and utilisation
Published February 25, 2014
9-12

The energy independence very important for the European Union, while simultaneously sparing the natural environment in order to increase the use of renewable energy sources . A further development is the key issue of how renewable energy sources available can be better utilized to improve the efficiency of economic competitiveness. EU renewable... energy policy is determined by five principles : The first is the environment, including the carbon dioxide and other pollutants to reduce emissions . The second increase energy security and at the same time reducing dependence on imports. The third aspect of local and regional development. With this realignment of economic and social development levels of different areas they want to achieve. This point is closely related to rural development and create new jobs . The transformation of the agricultural structure is an important aspect , which is that they can reduce the overproduction of food by providing alternative land use options , such as the cultivation of energy crops.

Show full abstract
53
70
Findings on the cultivation of potatoes in organic farming
Published November 20, 2011
113-116

This paper explores the effectiveness of organic and plastic mulching for potato production in the Czech Republic. The mulching with chopped grass (GM) and black textile mulch (BTM) were compared to non-mulching control variant (C) with mechanical cultivation. Especially in plots with BTM were first formed ridges and covered by the black polypr...opylene non-woven textile and then they were planting. During vegetation the infestation of Colorado potato beetle (CPB), weeds biomass, course of soil temperature and soil water potential were assessed. The results showed that surface of GM had a positive effect on soil temperature reduction, soil water potential depression. This study also indicated a positive effect of GM on the larvae of CPB diminution, on the other hand higher incidence of larvae and higher defoliation was observed in BTM. GM had a significant effect on the yield of potatoes. The yield of ware potatoes was higher by 27 % higher on plots with GM and by 16 % lower on plots wit BTM in comparison with C. NeemAzal T/S decreased statistically significantly % of defoliation and increased yield of ware potatoes by 35 % in comparison with control.

Show full abstract
38
45
Allelopathic effect of invasive plants (Eriochloa villosa, Asclepias syriaca, Fallopia x bohemica, Solidago gigantea) on seed germination
Published June 30, 2018
179-182

The aim of this study was to determine the allelopathic potential of invasive species woolly cupgrass (Eriochloa villosa), common milkweed (Asclepias syriaca), bohemian knotweed (Fallopia x bohemica), and giant goldenrod (Solidago gigantea Ait.) on germination crop (Lepidium sativum L.). Experiments were conducted under laboratory conditions to... determine effect of water extracts in petri dish bioassay. Water extracts from fresh biomass (leaves and stem) of invasive weeds in concentrations of 4 and 8 g/100 ml were investigated. All invasive plants showed allelopathic effect on germination. In giant goldenrod stem water extract experiment, allelopathic effect was less pronounced.

The cress germination was greatly suppressed with the woolly cupgrass, common milkweed and the giant goldenrod. The experiment showed that the seed germination depended on the concentrations and the plant material used (leaves and stem).

Show full abstract
73
76
Economic Aspects of Bioethanol Production
Published September 22, 2004
30-38

Sustainability and multifunctionality look to be crucial points of the future of developed agriculture. Energy utilization of a part of the available biomass perfectly fits in these expectations. Bioethanol production allows for the substitution of the most expensive and most pollutable energy source, gasoline, by agricultural materials. This a...rticle contains a complex evaluation of economic characteristics of this method and calculations for the expectable economic effects of a would-be Hungarian bioethanol program. This essay includes the most important technological knowledge, a comparison between bioethanol and the competitive energy sources (gasoline, biodiesel, MTBE) and the most interesting elements of bioethanol programs operating in foreign countries. Introduced are which participants in the bioethanol chain have financial interests and counter-interests under present economic conditions in the spread of bioethanol by the enumerazation of macro- and micro-economic factors. The statements and consequences are based on my own calculatiosn so I am truly interested in any professional opinion.

Show full abstract
17
21
Pre-treatment of wastes containing keratin in industrial conditions
Published October 10, 2008
59-64

The aim of the research was a development of a featherdegradation technology in industrial circumstances. During the experiments we determined the parameters of the critical environmental and technological limitation factors. Because of the high keratin-content the degradation (and composting) of the feather is difficult. With the developed tec...hnology huge mass of feather can be used fast and easily in biogas production and in the adjustment of the optimal element ratio of biomass. The industrial experiments were implemented in a 6m3 heatable double-walled
tank with stirring-shovels and aeration-system. The degradation process was followed with extinction measurements.
According to the experiments that were done the best results were given at the case which was heat-treated at 70°C, was injected with 1% bacteria concentration, and where 1:3 feather:water ratio was set if we consider the effectiveness of degradation and the hydraulical retention time.

Show full abstract
21
33
Management of phytopathogens by application of green nanobiotechnology: Emerging trends and challenges
Published June 2, 2015
15-22

Nanotechnology is highly interdisciplinary and important research area in modern science. The use of nanomaterials offer major advantages due to their unique size, shape and significantly improved physical, chemical, biological and antimicrobial properties. Physicochemical and antimicrobial properties of metal nanoparticles have received much a...ttention of researchers. There are different methods i.e. chemical, physical and biological for synthesis of nanoparticles. Chemical and physical methods have some limitations, and therefore, biological methods are needed to develop environment-friendly synthesis of nanoparticles. Moreover, biological method for the production of nanoparticles is simpler than chemical method as biological agents secrete large amount of enzymes, which reduce metals and can be responsible for the synthesis and capping on nanoparticles.

Biological systems for nanoparticle synthesis include plants, fungi, bacteria, yeasts, and actinomycetes. Many plant species including Opuntia ficus-indica, Azardirachta indica, Lawsonia inermis, Triticum aestivum, Hydrilla verticillata, Citrus medica, Catharanthus roseus, Avena sativa, etc., bacteria, such as Bacillus subtilis, Sulfate-Reducing Bacteria, Pseudomonas stutzeri, Lactobacillus sp., Klebsiella aerogenes, Torulopsis sp., and fungi, like Fusarium spp. Aspergillus spp., Verticillium spp., Saccharomyces cerevisae MKY3, Phoma spp. etc. have been exploited for the synthesis of different nanoparticles. Among all biological systems, fungi have been found to be more efficient system for synthesis of metal nanoparticles as they are easy to grow, produce more biomass and secret many enzymes. We proposed the term myconanotechnology (myco = fungi, nanotechnology = the creation and exploitation of materials in the size range of 1–100 nm). Myconanotechnology is the interface between mycology and nanotechnology, and is an exciting new applied interdisciplinary science that may have considerable potential, partly due to the wide range and diversity of fungi.

Nanotechnology is the promising tool to improve agricultural productivity though delivery of genes and drug molecules to target sites at cellular levels, genetic improvement, and nano-array based gene-technologies for gene expressions in plants and also use of nanoparticles-based gene transfer for breeding of varieties resistant to different pathogens and pests. The nanoparticles like copper (Cu), silver (Ag), titanium (Ti) and chitosan have shown their potential as novel antimicrobials for the management of pathogenic microorganisms affecting agricultural crops. Different experiments confirmed that fungal hyphae and conidial germination of pathogenic fungi are significantly inhibited by copper nanoparticles. The nanotechnologies can be used for the disease detection and also for its management. The progress in development of nano-herbicides, nano-fungicides and nano-pesticides will open up new avenues in the field of management of plant pathogens. The use of different nanoparticles in agriculture will increase productivity of crop. It is the necessity of time to use nanotechnology in agriculture with extensive experimental trials. However, there are challenges particularly the toxicity, which is not a big issue as compared to fungicides and pesticides.

Show full abstract
111
140
The effect of sulphur and nitrogen supply on the growth and nutrient content of spring wheat (Triticum aestivum L.)
Published June 30, 2018
65-70
Sulphur is an essential element for plants. Decreasing sulphur deposition from the air, and the use of more concentrated phosphate fertilizers, which contain no sulphur, has led to reports of sulphur deficiencies for wheat. Sulphur deficiency significantly affects yield and also the quality of wheat. The pot exper...iment was set up on calcareous chernozem soil at Látókép, Hungary, test plant was spring wheat (Triticum aestivum L). Seven treatments were used where nitrogen and sulphur were supplied as soil fertilizers in increasing rates (NS1, NS2, NS3) and in foliar fertilizer as well (NS1+fol., NS2+fol., NS3+fol.). Plant aboveground biomass production was determined in samples taken in the stages of development BBCH 29-30, 51-59, 61-69, 89. The nitrogen and sulphur content of straw and grain were measured. N/S ratios of grain and straw were calculated. The weights of grain were ranging between 8.6–16.1 g/pot. NS2 and NS2+fol. treatments produced the highest values. Foliar fertilizer had no further effect on grain. Analysing the values of the straw, it was observed that tendencies were similar to values of grain. The NS2 treatment produced the highest weight of straw and the NS3 rate already decreased that amount. The obtained results show the unfavourable effect of excessively high rate applied in NS3 treatment. The supplementary foliar fertilizer had no significant influence on the weight of straw. Both N and S-uptake of plant was very intensive at the stem elongation stage, then the N and S-content of plant continuously decreased in time in all treatments. The N-content of grain ranged between 2.215–2.838%.
The N-content of grain slightly increased with increasing of nitrogen doses. In the higher doses (NS2, NS3) foliar fertilization slightly increased the nitrogen content of grain, although this effect was not statistically proved. The N-content of straw varied from 0.361 to 0.605%. The growing dose of soil fertilizer also considerably increased the nitrogen content of straw. Foliar fertilization further increased the nitrogen content of straw. The S-content of grain ranged between 0.174–0.266%. The lowest fertilizer dose (NS1) significantly increased the sulphur content of grain. The further increasing fertilizer doses (NS2, NS3) did not cause additional enhance in sulphur content of grain.
The foliar fertilizer also did not change the sulphur value of plant. The increasing amount of soil fertilizer and the supplementary foliar fertilizer had no effect on the sulphur content of straw. The treatments influenced the N/S ratios of grain and straw. On the basis of experimental results it can be concluded that the examined nitrogen and sulphur containing soil fertilizer had positive effect on the growth and yield of spring wheat grown on the calcareous chernozem soil. The soil fertilizer application enhanced the grain nitrogen and sulphur content. The highest rate of fertilizer (600 kg ha-1) proved to have decreasing effect on the yield. The sulphur and nitrogen containing foliar fertilizer did not have significant effect on the yield parameters but slightly increased the nitrogen content of plant.
Show full abstract
101
78
26 - 50 of 71 items
<< < 1 2 3 > >>