Search

Published After
Published Before

Search Results

  • The Legal Rules Pertaining to Land Protection in Hungary
    324-331
    Views:
    96

    Buildings in industry, mining, transportation and for personal and commercial activities cover increasingly more valuable agricultural land. The increase of sub-urbanization and vehicular traffic and the spread of malls and other kinds of investments are causing serious harm for not only to human society, but to a whole national economy as well.
    The law on agricultural land (1994:LV) contains legal rules for the preservation, use and classification of agricultural land. These rules define the temporary or permanent use of land for agricultural and non-agricultural purposes; the scale of the land-protection fee and the rules of the process on cases in which land is used for non-agricultural purposes without the consent of the land registry. In the field of land classification, the law prescribes the regulations which are to be followed in order to define the net income of agricultural land in Golden Crowns.
    Hungarian land protection rules are unique in the European Union, because only few member-states have similar laws to ours. Community law does not regulate the member states, except in the case of land classification, because this is the basis of the tax paid on the agricultural lands, but even here, there are differences among the states.

  • The Valuation System of the National Land Fund
    317-323
    Views:
    93

    The aim of establishing a National Land Fund was to realise the rational management of land property belonging to the Hungarian State, to assist in the realisation of estate political directives, and also to support the development of a modern property structure based on family farms. During this 3 years operation the National Land Fund has become the major player of the Hungarian land market. It has arranged land trades totaling 15,000 hectares, which makes 50% of total related turnover. The NLF created the reason for the existence of land as credit security with the provision of security of mortgage credits. National Land Fund has written co-operation contracts with 11 commercial banks in order to provide long-term agricultural mortgage with the background of land security. NLF has issued almost 1,000 conditional declarations of land purchase to the banks, helping the credit system of agricultural companies.
    The valuation system „TÉR” created by the National Land Fund, is a many-sided, flexible system adjusted to Hungarian conditions. This evaluation system can determine the value of land in a reliable way. NLF built further controls into the process with the co-operation of independent revisers providing real determination of land value.

  • Marginalisation and Multifunctional Land Use in Hungary
    50-61
    Views:
    91

    Our study prepared as a brief version of National Report in the frame of EUROLAN Programme. We deal with the interpretation of some definitions (marginalisation of land use, multifunctionality of land use, marginalisation of agriculture, multifunctionality of agriculture), with sorting and reviewing indicators of marginalisation and finally with the analysis of functions of land use. We suggested a dynamic and a static approach of marginalisation. We can explore the dynamic process by time series and the static (regional) one by cross-section analyses.
    It is very hard to explain the perspective of the future of marginalisation of land and of agriculture in Hungary. The process of marginalisation seems faster in the agriculture in the coming years, but it depends on the utilisation of new possibilities given by the EU financial resources and by the Common Market. At this moment agriculture seems one of the big losers of the accession.
    In the long term we should face considerable challenges in the land use. It is necessary to take into account that there is a supply market of foods and traditional fibre production world-wide. There are limited possibilities to produce and to market for example biodiesel (fuel), bioethanol, or maybe biogas. Thus the environment and landscape preservation becomes more and more real land use alternatives.
    The environmental interpretation of the multifunctionality of land use: activities (functions) of environmental preservation and nature conservation in a certain area, which aim to preserve natural resources by the existing socio-economic conditions.
    Preservation of rural landscapes is the task mainly for land-users, who can be commanded by legal means and can be encouraged by economic measures to carry out the above activity. In the recent past measures of „command and control” type regulation were predominant, however nowadays, especially in the developed countries, the role of economic incentives increases.
    As a conclusion of our analysis we can state that as long as the main land-dependent activities (agriculture, forestry, housing, tourism, local mining) cease to be viable under an existing socio-economic structure, then it is hardly possible to sustain the rural landscape on an appropriate level by non-commodity products (such as environment preservation, cultural heritage, nature conservation, employment etc.).
    1 The study was prepared in the frame of EUROLAN (EU-5 Framework Project), QLK5-CT-2002-02346, as a compiled version of the Hungarian National Report, The national project co-ordinator: Prof. Dr. Gabor Szabo.
    A part of places with high ecological values coincides with the areas with unfavourable agricultural endowments and underdeveloped micro-regions. We think so that the marginalisation preserves the non-environmental-sound activities and hinders the development of multifunctional agriculture and this process can change only by joint utilisation of endogenous and exogenous resources and methods. Thus the successful programmes for agri-environmental protection and multifunctional land use can serve the moderation of negative effects of marginalisation or maybe the marginalisation process itself.

  • Effect of Ferilizer on the Yield of Maize (Zea mays L.)
    40-46
    Views:
    150

    The effect of fertilization on the yield of maize was examined on chernoem soil with lime deposits at the experimental station at Látókép of the Center for Agricultural Sciences, University of Debrecen. The yields of maize were evaluated using quadratic regression function, in three years – between 2000 and 2002 – in non-irrigated and irrigated treatments. After calculating the regression equations, by derivation of the functions, we have determined the amount of fertilizers needed for maximum yield.
    In the non-irrigated treatments, maximum yield and the active substance amount of fertilizer was as it follows: in 2000, yield of 9,133 t/ha with the application of 384 kg/ha mixed active substance, while in 2002 a yield of 6,289 t/ha with the application 236 kg/ha NPK active substance was achieved. In 2001, due to the favourable precipitation, a yield of 9,864 t/ha was achieved with the application of 245 kg/ha fertilizer. In the case of maximum yield, compared to the unfertilized control, the yield increase was 2,5-5 t/ha. The average increase for 1 kg of NPK fertilizer was 13-19 kg.
    We also determined the necessary fertilizer dosage for maximum yield in irrigated treatments. In 2000, 10,003 t/ha with a dosage of 423 kg/ha, in 2001, 11,542 t/ha with a dosage of 277 kg/ha and in 2002, 8,596 t/ha of maximum yield could be achieved with a fertilizer treatment of 277 kg/ha in the examined three years. The yield increase, in irrigated treatments, varied between 3,9-5,9 t/ha so it was greater than in the case of non-irrigated experimetal plots. The yield increase for 1 kg fertilizer varied between 12-21 kg.

  • Correlation analysis of relative chlorophyll content and yield of maize hybrids of different genotypes
    211-214
    Views:
    162

    In 2021, correlation between relative chlorophyll content and yield in three maize hybrids of different genotypes was examined. The data were collected at the Látókép Experimental Station of the University of Debrecen located on the Hajdúság loess ridge in Hungary. The soil of the small plot field strip plot trial, which was set up in 2011, was calcareous chernozem. Apart from the control treatment (without fertilisation), N fertiliser is applied in the form of base and top dressing. The base fertiliser containing 60 and 120 kg ha-1 N of nutrient applied in spring was followed by top dressing containing +30–30 kg ha-1 N in V6 and V12 phenophases. SPAD values measured at different phenological stages of the growing season increased by an average of about 28% up to 10 leaf stage for all three hybrids. In the pre-silking period (Vn), the relative chlorophyll content decreased by 8% on average. After an average increase of 14% in the tasselling and silking period, SPAD decreased by an average of about 29% at full maturity (R6).

    For the different fertiliser treatments, higher N doses resulted in higher yields. In the basal fertiliser treatment, the A 60 N dose resulted in an average 34% increase in yield, and the A 120 N dose resulted in an average 94% increase in yield compared to the control. The 60 kg ha-1 N basal fertiliser (A60) increased in the V6 phenophase with an additional 30 kg ha-1 N resulted in an average yield increase of 26%. When 120 kg ha-1 N of basal fertiliser (A120) was increased by an additional 30 kg ha-1 N in the V6 phenophase, only the Merida hybrid showed a significant yield increase (7%). No further yield increase was observed when V690 and V6150 treatments were increased by an additional 30 kg ha-1 N in the V12 phenophase. The yield of the Armagnac hybrid decreased by almost 20%, the yield of Fornad by 3% and the yield of Merida by 1%.

  • Ecological Conditions of Agricultural Land Use in Transcarpathia
    190-194
    Views:
    97

    The unbalanced anthropogenic effects for several decades resulted in significant technogen damages in the ecosystem of Ukraine. Excessive land development, including the use of slopes, effected the disintegration of the natural balance of lands – arable-lands, meadows, forests, and watershed areas – producing quite a negative effect on the landscape’s nature itself. It has to be stressed that according to other indexes, too, agricultural lands show a tendentious deterioration.
    Erosion, caused by water and wind, is one of the most influential factors in the degradation of agricultural soils and in the reduction of the productiveness of benefital lands. Nowadays the degree erosion became significant and it directly endangers the existence of the soil which is a principal chain-link of the agricultural cultivation as well as an irreplaceable element of the biosphere.
    The social and political changes in Ukraine’s life demand fundamental modernization in the land utilization both in ecological and in economical aspects. However, these aims can be realized only if, during the developments, we base on the up-to-date results of agronomics, and we do further research in the relations of agricultural land use and environmental protection. According to the latest theories, rational and environmental-safe agricultural production relates to the optimum correlation of the natural- and agricultural- ecosystems as well as to the reconstruction of agricultural areas built on the basis of environmental protection.

  • Possibilities of biodiversity conservation in agricultural fields
    39-45
    Views:
    165

    The biodiversity loss is one of the biggest environmental problems in the world. The objective of this paper is to present some nature conservation practices on agricultural land. Farmlands play a significant role to preserve biodiversity because some highly protected species can only find their needs on agricultural land. The Biodiversity Strategy of the European Union (2010-2020) creates new directives to reduce biodiversity loss, preserve and improve diversity, especially on agricultural land. Furthermore the importance of this subject is that the share of farmland in Hungary is much higher (57%) than in the EU-27 on average (42%). The loss of agricultural land and the increase of land abandonment cause intensification of agricultural production leading to the loss of biodiversity.

  • An advanced classification method for urban land cover classification
    51-57
    Views:
    237

    This manuscript presents a detailed comparative analysis of three advanced classification techniques that were used between 2018 and 2020 to classify land cover using Landsat8 imagery, namely Support Vector Machine (SVM), Maximum Likelihood Classification (MLSC), and Random Forests (RF). The study focuses on evaluating the accuracy of these methods by comparing the classified maps with a higher-resolution ground truth map, utilising 500 randomly selected points for assessment.

    The obtained results show that, compared to MLSC and RT, the Support Vector Machine (SVM) approach performs better. The SVM model demonstrates enhanced precision in land cover classification, showcasing its effectiveness in discerning subtle differences in landscape features.

    Furthermore, using the precise classification results produced by the SVM method, this study examines the temporal variations in land cover between 2018 and 2020. The results provide insight into dynamic land cover changes and highlight the significance of applying reliable classification techniques for thorough temporal analysis with Landsat8 images.

  • Distribution of family farms according to estate size and land usage in Hajdú-Bihar County
    130-136
    Views:
    96

    In harmony with European tendencies, the role of agriculture and its share in GDP output, as well as in employment, is continuously decreasing in Hungary and Hajdú-Bihar County. At the same time, according to the specialized literature, the role of agriculture is still extremely important in the income of the rural population and in easing the present social tensions, and this will not change in the future. The economic and social processes of the last one and a half decades caused radical changes in agriculture. The above-mentioned processes resulted in new property and organizational structure in the field of leasehold and land structure. The rational land concentration which came to pass in the last few years can be mentioned as a favourable tendency that improves the efficiency of agricultural activities, as well as the more effective land usage accompanied by this process. In addition, it supports the integration with principles formulated in the Common Agricultural Policy. In this study, I survey the effects of established processes and the change of land usage in the case of individual family enterprises in Hajdú-Bihar County. The choice of the examination area was motivated by the higher proportion of agricultural area in comparison with the national average and the fact that this sector has great importance today, too.

  • Examinations of the carbon dioxide emission of the soil in the case of different tillage methods in a field experiment
    209-212
    Views:
    250
    Today's global challenge is the increasing concentration of carbon dioxide (CO2) and other greenhouse gases in the air. The level of CO2 emissions may be significantly affected by the agriculture and, more specifically, the applied tillage method, even though to a lesser extent than industrial production. On a global scale, the CO2 emission of an agricultural area is insignificant in comparison to that of a large-scale plant in an area of the same size, but areas under cultivation, including arable land, have a large global area. In this paper, we investigated the relationship between applied soil tillage methods and carbon dioxide emissions in the case of different fertiliser treatments. In our experiment we examined four types of tillage with five different fertiliser effects. Comparing fertiliser treatments and tillage methods, it was found that their interaction significantly affected carbon dioxide emissions, the lowest value was obtained in the case of the 210 l ha-1 Nitrosol+N-LOCK – tillage radish treatment. Strip and tillage radish methods have relatively homogeneous, low value.
  • Connections between land usage, property structure and agricultural enterprises in Hungary
    31-34
    Views:
    97

    The last decade of Hungarian agriculture was marked and changes which affected all parts of agricultural production. This process resulted in a new ownership and organisation structure. The paper presents the effects of the changes in ownership on land use and the various enterprise forms and intends to outline the main tendencies. In general, it can be stated that the role of agriculture in GDP production and employment is decreasing in Hungary, but according to concurrent opinions of experts, agriculture still has and will have a major role in income production and the ease of social tensions in rural areas in the future as well. Hungary’s accession to the European Union provides new chances and new prospects for Hungarian agriculture and rural areas. Hungarian agriculture became a part of the internal market which includes about 450 million people. The safety of marketing became stronger, the rate of financial support is increasing and the income of growers will increase in the future. This process implies more obligations and the keeping of strict regulations. Competition inside the internal market is intensifying, competitiveness will be more important while the chances of development and investment of the growers and the feasibility of more effective land use are increasing. After the accession, integration into the directives formulated in the CAP and the packages of measures accepted in it is framework have growing importance.
    These directives encourage farm-reallocation, namely the rational estate concentration. In general, it can be stated that rational estate concentration, and more effective land use as a consequence, will increase the efficiency of agricultural production.

  • The Effect of Fertilization and Irrigation on Maize(Zea mays L.) Production
    26-29
    Views:
    150

    In a long-term field experiment set up at the Látókép experimental station of the Center of Agricultural Sciences of Debrecen University, the data of the last five years (1995-1999) were analyzed to determine the crop production factors with the greatest influence on maize production and the relationship and interactions between irrigation and fertilization.
    In the extremely dry year of 1995, fertilization was found to cause substantial yield depression in the absence of irrigation. According to results of analysis of variance, fertilization significantly reduced the maize yield by 40-90% compared to control plots. Under irrigated conditions, there was a considerable increase in the maize yield, the yield surplus being 4.4-9.4 t ha-1, depending on the nutrient supply level.
    During the period from 1996-1999, when rainfall conditions were favorable for maize, fertilization significantly increased the maize yield even without irrigation over the average of the four years. The yield surplus due to fertilization was 3.9-4.6 t ha-1, depending on the fertilization rates. The maximum yield surplus was obtained on plots fertilized with 120 N kg ha-1, while at the rate of 240 N kg ha-1 the maize yield did not differ significantly from this value. During the period examined, corn yield was significantly higher at all three nutrient supply levels as the result of irrigation than in the non-irrigated treatment. As in the case of non-irrigated conditions, the highest fertilizer dose did not result in a substantial yield increase. An analysis of the interaction between fertilization and irrigation indicated that the yield-increasing effect of fertilization was not significantly different under irrigated and non-irrigated conditions. The significant year x irrigation interaction was confirmed by the fact that the yield surplus (1.3-2.3 t ha-1) differed greatly from the irrigation effect recorded in 1995.

  • Assessment of Environmental Susceptibility/Vulnerability of Soils
    62-74
    Views:
    102

    Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
    The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
    Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
    Soil resources are threatened by the following environmental stresses:
    – soil degradation processes;
    – extreme moisture regime;
    – nutrient stresses (deficiency or toxicity);
    – environmental pollution.
    Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
    The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
    The efficient control of these processes necessitates the following consecutive steps:
    • registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
    • evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
    • assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
    • elaboration of efficient technologies for the „best” control alternatives (best management practice).
    Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
    Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
    The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

  • The Role of the Digital Terrain Models in the Assessment of Surplus Water Risk at the Szolnok-Túri Plain
    47-51
    Views:
    141

    The environmental factors to which surplus water can be assigned (topography, soil, groundwater, vegetation etc.) can be subject to special analysis and the randomness of the occurrences can be limited. The results of these procedures are surplus water risk maps of the areas, which can be utilised in land use planning. The risk map of the research site was created with overlaying digital category maps of the determining factors (hydraulic conductivity, convexity, critical probability of ground water level and land use).

  • The Effect of Tillage Treatments on Soil Temperature at Planting and on Corn (Zea mays L.) Yield
    40-44
    Views:
    149

    The effect of soil temperature was evaluated on the yield of the Occitan corn hybrid at a depth of 5 cm. We examined this effect on the time required from planting to emergence for three average durations: five, ten and fifteen days, all calculated from the day of planting. Winter plowing (27 cm), spring plowing (23 cm), disc-till (12 cm) treatments and 120 kg N per hectare fertilizer were applied. As a result of our analysis, we determined the post planting optimum soil temperatures for various time periods. The average soil temperature for a time period of 15 days post planting is the most usable for determining actual yields, followed by ten days, with five days proved to be the least usable (winter plow R2 = 0.86, spring plow R2 = 0.87, disc-till R2 = 0.64).

  • Investigation of harvest index influencing agrotechnical and botanical factors in hairy vetch (Vicia villosa Roth.)
    123-128
    Views:
    161

    The biggest problem of Hungarian crop farming is mass production and the simple crop rotation based on cereals. There was a decrease in sowing area of protein crops which raises crucial issues in crop rotation and land use. Therefore, growing papilionaceous plants, which are now considered to be alternative plants, should be taken under close examination. Hairy vetch (Vicia villosa Roth.) belongs to the family of papilionaceous plants and it can be grown in light weak soils.

    In Hungary, hairy vetch was used as green forage at first, but it later became a green manure plant.  Nowadays, it is used as a cover crop and its sowing seed has a good export market. In low fertile soils it is able to produce a big amount of green yield (25–40 t ha-1) even in spring while its seed yield could be 0.4–0.5 t ha-1 at farm level. In addition to its morphological characteristics hairy vetch is grown mainly with a supporting plant, i.e. triticale in many cases.

    Our purpose was to test the harvest index and its agrotechnical and botanical factors of hairy vetch in different cropping systems.

  • The energy balance of maize production – alternative approaches
    59-63
    Views:
    169
    Agricultural production is a crucial area, perhaps the most important for humanity. This is the only area which cannot be avoided. Therefore, it is of utmost importance to know how sustainable the system is in the long run as regards energy consumption. We have chosen the maize production sector as the main focus of this study. This crop is especially important all over the world, therefore; it requires significant input also in terms of energy. Currently, the system of maize production (as with the others) operates as an open energy system.
    This study aims to examine how much of the agricultural land’s energy demand could be met with the help of the byproducts of 1 hectare of agricultural land - operating as a closed system, using only the remaining maize stalk and cob byproducts for energy - under the conditions of Hungarian maize production.
    Energy demand is largely determined by the land’s fertilizer requirement, followed by the input factor of the energy demand of the machinery during earthwork and transport.
    The study assumes that the energy from the byproducts of maize production will be used exclusively with biogas technology. This can even be implemented on a county level. The final question is whether the maize production system will be able to sustain itself solely by using its own byproducts.
  • Examination of the conditions of extreme water balance circumstances (water logging, drought) with environmental information technology tools
    79-86
    Views:
    249

    The Carpathian Basin is characterized by varying hydrological extremes, both in space and time. Hungary's natural endowments are more favourable than average, especially for agricultural production, with 5,3 million hectares of land we have which is suitable for agricultural production. These extreme water management are often occur in the same year and mostly in the same region, which may become more frequent in the future, especially in the lowland regions. The negative impacts of extreme water management was influenced by the land use changes in recent years, which has modified the runoff processes of the affected regions.

    The aim of the study was to research the formation of inland water and drought circumstances in two sample areas the Great Plain (Szolnok-Túri flat and Nyírség) by geoinformatic tools. During the investigation in the first step we determined that areas which are susceptible to inland water and drought, based on the AGROTOPO database. In addition, land-use categories of characteristics of the sample areas are evaluated according to the Corine Land Cover. Furthermore, after defining characteristic of NDVI values between the period of 2003–2013, we evaluated the effect of drought whether can be detected in crop failures in respective areas.

    Based on our results, we concluded that the formation of inland water and drought circumstances can be investigated in a large spatial extension by geoinformatic tools and databases.

  • Study of drought stress correlation on yield and yield components of maize cultivars (Zea mays L.)
    67-73
    Views:
    261

    This article was investigated to study the correlation and analysis of drought stress regression on maize cultivars' yield and components. The variance analysis results showed a significant difference between drought stress levels in terms of plant height, total dry weight and number of seeds per row, the total weight of cob, grain yield, harvest index, stem diameter, and cob weight with protective leave. Also, there was a significant difference in ear weight without protective leaves, ear diameter, ear length, plant weight, 100-seed weight, and seed per ear on hybrid treatments. There were statistically significant differences between cultivars in plant height, leaf area, ear diameter, ear length, number of seeds per row, number of seeds per ear, the total weight of cob wood, 100-seed weight, harvest index, plant dry weight. The results of the correlation of traits for the mean levels of drought stress showed a positive and significant correlation between plant yield and plant height, seed per row, ear length and weight of 5 pieces of wood and also with a total weight of cob wood, ear weight with bark showed the highest correlation. There is a significant correlation between leaf area and stem diameter, plant weight, total dry weight at the probability level of 0.05. Correlation coefficients between traits in non-stress conditions showed a positive and significant correlation between grain yield and height, ear length and grain in the row, which was a significant increase compared to stress conditions. The correlation of traits under full stress conditions also showed that the correlation coefficient between cob length trait and positive height was positive and significant. From the study of correlation coefficients between maize traits in non-stress conditions, it can be concluded that the most important components of grain yield are cob length and grain per row. While the correlation coefficients under moisture stress conditions show that the grain trait in the row has a positive and significant correlation with yield, under stress conditions in the cob stage did not show any traits with correlation yield.

  • The impact of climatic factors on the relative chlorophyll content and yield of a maize hybrid in a long-term experiment
    71-77
    Views:
    238

    The impact of the climatic factors of crop year on the relative chlorophyll content of maize was examined for three years. The examinations were carried out on the Látókép Experiment Site of the University of Debrecen on calcareous chernozem soil in a small-plot, non-irrigated long-term field experiment with strip plot design. In addition to a non-fertilised (control) treatment, nitrogen (N) fertiliser doses were applied as base and top dressing. The 60 and 120 kg N ha-1 base dressing doses were followed by two top dressing doses at the V6 and V12 phenophases.

    Averaged over the different fertiliser treatments, SPAD readings increased in all three years as the growing season progressed. The highes SPAD value increase was observed in the average crop year (2017) at the V12 phenophase (11.8), which further increased at the R1 phenophas, by 3,7. No significant Spad value difference was observed between the average (2017) and the dry year (2018) at the V6 growth phase. However, in the wet crop year (2016), the V690 treatment provided the statistically highest relative chlorophyll content (46.8). At the V12 phenophase, the base dressing dose of 120 kg N ha-1+30 kg N ha-1 (V6150) showed to be successful in two years (2016 and 2018), while in 2017, the base dressing dose of A60 was successful. The impact of crop year on relative chlorophyll content can be clearly shown at the R1 growth stage. In all three years, the significantly highest relative chlorophyll content could be achieved at different nutrient levels: A60 in 2016, V6150 in 2017 and V690.

    In a wet year (2016), higher yield could be achieved as a result of the 60 kg N ha-1 base dressing and 30 kg N ha-1 at the V6 growth stage (V690) as top dressing in comparison with 2017 and 2018, when higher fertiliser dose (120 kg N ha-1 base dressing and 30 kg N ha-1top dressing at the V6 growth stage) was needed to achieve a significant yield surplus.

    Altogether, averaged over the different treatments, the highest yield (12.48 t ha-1) was observed in the wet year, when the relative chlorophyll content was also the highest (50.6).

  • Results of the sensory analysis of precision maize production
    59-62
    Views:
    248

    This research was carried out in 2018, at the Látókép Experimental Station of the University of Debrecen in a moderately warm and dry production area, on deep humus layered medium-hard calcareous chernozem soil. In the scope of the research, the chlorophyll content of maize (Zea mays L.) was examined under field circumstances by means of local sensory measurements and we were looking for correlation between the obtained values and the amount of yield. Our measurements were carried out with Minolta SPAD-502 and GreenSeeker devices at 3 measurement times (4 leaf stage, 10 leaf stage and silking). It was found that phenological phases had an effect on the obtained SPAD and NDVI values and were in a slightly significant correlation with the yield. The most significant correlation was found between the results obtained during silking and the amount of yield. This may be because the least time has passed between the measurement time and harvest. Results obtained during the 10-leaf stage show excessive values in each case, which can be due to a measurement error. It was found that the phenological phase had an effect on the correlation of SPAD and NDVI values and the amount of yield. As the phenological phase progressed, the correlation between the measured results and yield has increased.

  • Effect of different N doses on maize yield and quality
    97-101
    Views:
    204

     The effect of N doses on the yield and nutritional values of the Sushi (FAO 340) maize hybrid were analysed in three years (2018, 2019, and 2020). The analyses were performed at the Látókép Experimental Station of the University of Debrecen on calcareous chernozem soil, in a striped, small-plot, non-irrigated long-term field experiment. In the experiment, in addition to the non-fertilized treatment (A0), the N-fertilizer doses were applied as basic fertilizer and top dressing. The 60 and 120 kg N ha-1 dose (A60, A120) applied as spring basic fertilizer were followed by two phases of top-dressing in V6 (V690, V6120) and V12 (V12150, V12180) phenophases; the amounts were +30 and +30 kg N ha-1.

    Maize yields were affected to varying degrees by crop year. The highest yields in 2018 and 2020 were recorded in the same V6150 treatment, while in 2019 the highest yield was obtained in the A120 treatment.

    Increasing the N doses resulted in an increase in the protein content of the maize kernel. Depending on the fertilizer treatments and the crop year effect, the protein content of maize kernels varied between 6.2–10.2 g x 100 g-1. In all three years, the protein content was the lowest in the control treatment (A0) and the highest in the V6150 treatment.

    The starch content ranged from 70.7 to 77.9 g x 100 g-1 in the average of the three years. In 2020, it was significantly higher in all nutrient treatments than in the other examined two years. The highest starch content - except for 2020 (A120, 77.9 g x 100 g-1) - was recorded in the A0 treatment (74.2, 72.3 g x 100 g-1).

    The oil content of maize kernels varied between the values of 3.8 and 5.2 g x 100 g-1 in the average of three years. In terms of oil content, the results for 2018 and 2019 can be considered the same, while in 2020 it was significantly lower. Fertilizer treatments did not significantly affect the oil content of maize in any of the years.

    The fertilizer dose applied in the V12 phenological phase was not effective in terms of yield and nutritional content (protein, starch and oil content).

  • Studying the effects of traits in the genotype of three maize hybrids in Hungary
    97-101
    Views:
    377

    In this study, we selected three hybrids (Armagnac, Loupiac, and Sushi) for evaluation of the effect of traits in genotype in Debrecen. In 2017, the total rainfall from May to October was 314 mm in Debrecen, which was 236 mm in the winter period before sowing. The obtained results showed that there was a positive correlation between the weight of the cob maize and the rate of seed/cob, number of rows with number of seeds in column and outer diameter ear with weight of cob and number of rows in grain per ear and the rate of seed / cob; Also, there was a negative correlation between grain weight in ear with seed/cob rate, outer diameter ear and the rate of seed/cob and outer diameter ear with the number of leaves. There was a positive correlation between stem diameter, Seed/cob rate and the number of nodes by GGE biplot. In addition, there are traits of weight of all seeds and outer ear diameter that had the highest effect on average yield. Moreover, the number of seeds per row showed the least effect on the average yield of hybrids.

  • Evaluation of decreasing moisture content of different maize genotypes
    147-151
    Views:
    305

    An experiment was conducted to evaluate the decrease in grain moisture content in three maize hybrids in Debrecen in 2017. Armagnac, Sushi and Loupiac were the examined hybrids in this study. The culture medium and temperature conditions were applied uniformly for all three hybrids. According to the results obtained from the ratio of moisture content of seeds per day, the Armagnac variety in the intensive drying down phase loses more time and moisture content, so it can be concluded that the produced dry matter is more than in the case of other varieties. Armagnac requires more time to achieve yield, while the Sushi and Loupiac hybrids produce less harvest. Regarding the slope of the regression line, the rate of loss of moisture in the grain has been negatively correlated with the amount of “b” in the three examined hybrids. In regression analysis, the coefficient of explanation showed that the effect of day in the Armagnac was 97% in the Loupiac, 95% and in the Sushi 90% of the total dynamic value of moisture motion.

  • Examination of drought stress of two genotype maize hybrids with different fertilization
    53-57
    Views:
    132

    In the growing season of 2019, we analysed stress resulting from climatic factors on maize hybrids of different genotypes, with the aim of gaining a better understanding of the physiological responses of each hybrid, which might support the elaboration of a cost-effective irrigation plan.

    Our experiments were carried out at the Látókép Experimental Station of the University of Debrecen on calcareous chernozem soil in a small-plot long-term field trial with strip plot design. In the scope of the experiment, N-fertilizer doses were applied as basic fertilizer and top-dressing in addition to the non-fertilized (control) treatment. The 60 and 120 kg N/ha doses applied as basic fertilizers in the spring were followed by top-dressing in the V6 phenophase with a +30 kg N/ha dose. Measurements were carried out with the involvement of the Renfor early (FAO 320) and Fornad (FAO 420) late maturity hybrids-

    The stomata of the plants became more and more closed with the progression of the phenological phases; their stomatal conductance decreased. However, the hybrids responded differently to environmental stress. In the case of the Renfor hybrid, the highest conductance (669 mmol/m2-s) was recorded in the V12 phenophase with the 150 kg N/ha treatment. The stomata were more open due to the high turgor pressure, allowing plants to evaporate properly. The plant was in its worst physiological condition on 2nd July, at the time of the appearance of the last leaf in the case of the 120 kg N dose (224 mmol/m2-s). The value measured in the V12 phenophase has already shown that the stomata were closing due to the self-regulating system of the plant. It would have been necessary to dispense irrigation water following the measurement. This confirms the finding that water stress can be prevented by measuring stomatal conductance.

    In the case of the Fornad hybrid, stomatal conductance was the highest on 12th June (630 mmol/m2-s) in the 90 kg N/ha treatment and it was the lowest (183 mmol/m2-s) in VT (emergence of the last leaf) phenophase in the 60 kg N/ha treatment. In this case, the appropriate time for applying irrigation water would have been early July, when the conditions for the plants were still adequate. Subsequently, the stomata began to close due to a reduction of the water resources available to them.

    There was a significant correlation between soil moisture and stomatal conductance, as well as between temperature and stomatal conductance.