No. 2 (2022)

Articles

Analysis of the plant physiological effects of late, artificial corn smut infestation using remote sensing methods

Published December 6, 2022
Authors
László Radócz
Hungarian
, Levente Sápi
Hungarian Chamber of Phytosanitary Engineers and Phytomedicines, Hajdú-Bihar County Regional Organisation
, Péter Zagyi
University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology
, Éva Horváth
University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology
, András Tamás
University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology
View
Keywords
remote sensing disease maize ustilago maydis vegetation indices
How to Cite
Selected stlye: APA
Radócz, L., Sápi, L., Zagyi, P., Horváth, Éva, & Tamás, A. (2022). Analysis of the plant physiological effects of late, artificial corn smut infestation using remote sensing methods. Acta Agraria Debreceniensis, (2), 31–35. https://doi.org/10.34101/actaagrar/2/10367
License

Copyright (c) 2022 Acta Agraria Debreceniensis

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

In Hungary, corn is also infected by several important pathogens. In this experiment, we analysed the plant physiological effects of artificial late cron smut infestation using remote sensing methods under field conditions We examined the experimental area from which the data comes from with a DJI Phantom 4 Multispectral Drone NDVI and NDRE indices were calculated and analyzed in GIS programs. Individuals treated with a higher dose remained much greener than the untreated control. They also showed significant differences within the indices used.

Downloads

Download data is not yet available.
References
Barnes, E.M.–Clarke, T.R.–Richards, S.E.–Colaizzi, P.D.–Haberland, J.–Kostrzewski, M.–Waller, P.–Choi, C.–Riley, E.–Thompson, T. (2000): "Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data." Proc. 5th Int. Conf. Precis Agric. Bloomington, MN, USA
Bhandari, A.K.–Kumar, A. (2012): “Feature Extraction using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City”, Proceedings of Communication, Computing & Security. Procedia Technology Volume 6, pp. 612–621. https://doi.org/10.1016/j.protcy.2012.10.074
De Jong, S.M.–Van der Meer, F.D. (Eds.). (2007): Remote sensing image analysis: including the spatial domain (Vol. 5). Springer Science & Business Media.
Frommer, D.–Veres, Sz.–Lévai, L.–Radócz, L.: 2015. Régi-új betegség a kukorica golyvásüszög (Ustilago maydis). Journal of Agricultural Sciences. 66: 43–46.
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=
Agricultural_production_-_crops#Cereals
https://www.ksh.hu/stadat_files/mez/hu/mez0072.html).
Mahlein, A.K.–Oerke, E.C.–Steiner, U.–Dehne, H.W. (2012): Recent advances in sensing plant diseases for precision crop protection. Eur J Plant Pathol 133:197–209. doi:10.1007/s10658-011-9878-z
Mazaheri-Naeini, M.–Sabbagh, S.K.–Martinez, Y.–Séjalon-Delmas, N.–Roux, C. (2015): Assessment of Ustilago maydis as a fungal model for root infection studies. Fungal Biolodgy, 119 (2–3), pp. 145–153. https://doi.org/10.1016/j.funbio.2014.12.002
Nageswara, P.P.R–Shobha, S.V.–Ramesh, K.S.–Somashekhar, R.K. (2005): “Satellite-based assessment of Agricultural drought in Karnataka State, Journal of the Indian society of remote sensing”, 33 (3), pp. 429-434., 2005
Pécsi, S. (1997): A kukorica betegségei. in: Glist, M.–Horváth, J.–Kuroli, G.–Petróczi, I. (szerk.): Növényvédelem. Mezőgazda Kiadó, Budapest. pp. 49–60.
Sankaran, S.–Mishra, A.–Ehsani, R.–Davis, C. (2010): A review of advanced techniques for detecting plant diseases.
Comput. Electron. Agr. 72, 1–13. https://doi.org/10.1016/j.compag.2010.02.007
Sharma, P.–Jha, A.B.–Dubey, R.S.–Pessarakli, M. (2012): Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Botany. 2012:1–26. doi:10.1155/2012/217037
Szőke, L.–Kovács, G.–Biró, Gy.–Rácz, D.–Radócz, L.–Takácsné, H.M.–Kovács, B.–Tóth B. (2021a): Hormonkezelések hatása a golyvásüszög fertőzés tüneteinek mérséklésére. Növénytermelés 70. 2 p.1–22.
Szőke, L.–Moloi, M.J.–Kovács, G.–Biró, Gy.–Radócz, L.–Hájos, M.–Kovács, B.–Rácz, D.–Danter, M.–Tóth, B. (2021b): The Application of Phytohormones as Biostimulants in Corn Smut Infected Hungarian Sweet and Fodder Corn Hybrids. Plants. 10(9):1822. https://doi.org/10.3390/plants10091822
Tucker, C.J. (1979): Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150. https://doi.org/10.1016/0034-4257(79)90013-0
West, J.S.–Bravo, C.–Oberti, R.–Lemaire, D.–Moshou, D.–McCartney, H.A. (2003): The potential of optical canopy measurement for targeted control of field crop diseases. Annu. Rev. Phytopathol. 41, 593–614. doi: 10.1146/annurev.phyto.41.121702.103726