Search

Published After
Published Before

Search Results

  • Parameter optimization of an inductively coupled plasma mass spectrometer for measuring arsenic and selenium
    81-85
    Views:
    185

    In the last decades, an increased interest has evolved in arsenic and selenium. The aim is to understand the environmental, agricultural and biological roles of these elements. In the case of arsenic, the major reasons are the relatively high concentration of arsenic in marine biota (mg kg-1) and the arsenic contaminated drinking water bases of some Asian countries, as well as Hungary. The toxicity of higher level selenium content is also known; nevertheless, selenium is essential for several biological functions. Considering its essentialness, in our country, the insufficient selenium intake rate causes a lack of selenium. Measuring the concentrations of these elements provides crucial, but unsatisfactory information, as the speciation, i.e. the form of an element presented in a sample is also required.
    In both cases, the most suitable method to determine concentration is inductively coupled plasma mass spectrometry (ICP-MS). Our objective was to optimize the variable parameters of the ICP-MS to attain the lowest (the best) detection limit. For this purpose, we investigated the effect of parameter change on net signal intensity and relative signal intensity. With the optimized parameter settings, the limits of detection for arsenic and selenium were determined, which are 0,032 ng dm-3 for arsenic, and 0,097 ng dm-3 for selenium. 

  • Preliminary results of the combined production of duckweed Spirodela polyrhiza and common carp (Cyprinus carpio) in an aquaponic system
    83-89
    Views:
    136

    As a result of population growth, increasin amount of food is needed, and agriculture is under an increasing burden to meet these needs. Traditional agriculture is often attacked due to its environmental impact. We must find alternative, environmentally friendly ways to produce more food. Aquaponics is a closed system in which we can produce both fish and plants at the same time. Duckweed species are small, aquatic, floating plants belonging to angiosperms. It can potentially be an alternative protein source, due to its high protein content, good amino acid supply, and rapid growth. Under suitable conditions, it doubles its weight in 2–4 days, and can reach a yield of 30 t ha-1 year-1in dry matter. It forms a carpet on top of the water and can be found in slow-moving or still waters. Since they are resistant to a wide range of nutrient concentrations, they are also suitable for cleaning wastewater (such as eutrophicated lakes, sewage reservoirs, liquid manure storage). Fish feed is the primary nutrient source for aquaponic systems, which usually contains fishmeal. If duckweed can be used as an alternative for fishmeal in the feed, it could improve the sustainability of the aquaponic and aquaculture systems. In this study, the aim was to develop an optimal harvesting protocol for duckweed Spirodela polyrhiza under aquaponic conditions. In a four weeks experiments, four harvesting protocols were set up, a control where only biomass measurements were made, a 25% group where 25% of the biomass at the time of measurement was harvested, and a 50% and a 75% group where at the time of measurement 50% and 75% of the biomass was harvested. Three replicates were used per treatment. We weighed the biomass every week and removed the amount corresponding to the group. Based on the preliminary results, it can be said that more biomass was obtained in the groups with the 25% harvesting protocol and the control group.

  • Deproteinized plant juice as part of circular economy: A short review and brief experimental data
    23-26
    Views:
    1536

    As the population of the Earth is constantly growing it generates an unmet demand for protein, which is an urgent problem. The protein extraction process is a potential solution, which offers high-quality plant protein suitable for animal and human nutrition at a favorable price. The process used within our project produces green juice from the green alfalfa biomass through pressing. After the coagulation of protein from this green juice, the by-product is called DPJ (Deproteinized Plant Juices) or brown juice. Our preliminary results match the international literature, namely that brown juice take up as much as 50% of the fresh biomass in weight. To utilize this by-product is a crucial part of the process to make it environmental-friendly and financially viable as well. The examined brown juice samples came from a small-scale experiment of alfalfa varieties carried out in the experimental farm at the University of Debrecen. According to our preliminary results, brown juice has high macro- and micronutrient values, furthermore, it has a potentially high amount of antioxidant compounds. The study highlights that brown juice is suitable as an ingredient in microbiological media, in plant nutrition as a supplementary solution, for feedstock and for preparing human food supplements or functional foods. The potential utilization of all biorefinery products makes it a very appropriate technology for today’s challenges.

  • Daily soil carbon dioxide flux under different tillage conditions
    141-144
    Views:
    210

    Over the last few years, warming of the atmospheric layer near Earth's surface is increasingly experienced and researchers have also established that concentration of numerous greenhouse gases have risen over the past two centuries value. Change is basically a legitimate process - considering atmospheric concentration as well - but the change experienced during the past centuries could not have become this critical without the contribution of human activity. Due to the nature of the greenhouse effect, the result of a very fragile, complex process is experienced currently on Earth, which can be significantly unbalanced even by a slight change. Carbon dioxide emitted from the soil is involved in the global cycle and has an impact on the greenhouse effect. The rise in soil respiration may result in the further intensification of warming. In the scope of the present study, it was examined how carbon dioxide emissions of the soil evolve over a day. The results have been established based on the comparison of the effects of different parts of the day, tillage methods and irrigation.

  • Exogenous salicylic acid treatments enhance tolerance to salinity of wheat (Triticum aestivum) plantlets
    34-38
    Views:
    130

    Salt stress, an abiotic stress, determines modifications of some biochemical indicators, like, antioxidant enzymes, proline (amino acid
    accumulate in higher plants under salinity stress) content, and some physiological processes including: plant growth and development. In
    this paper we studied the influence of exogenous treatment of wheat seeds, with 0.1 mM salicylic acid (SA) solution, in the plant response to
    salt stress. The treatment was applied by presoaking the seeds in the treatment solution for 12 hours before germination. The results showed
    that exogenous 0.1 mM SA solution, administrated to the wheat cariopses significantly ameliorated the negative effect of salt stress in first
    week of germination in laboratory conditions.

  • Awareness and adoption of a nurse sow management system among small-scale pig farmers in Nakuru County, Kenya
    113-120
    Views:
    155

    This study aimed to assess the level of awareness and adoption of nurse sow management strategies among small-scale pig farmers in Nakuru County, Kenya. The research included a survey of pig farmers who visited the Nakuru Agricultural Show in July 2023. A total of 139 farmers were interviewed within 5 days of the show. The corresponding author interviewed the respondents in a face-to-face engagement, where questions on nurse sow management were initially drafted in English and translated into Kiswahili, i.e. the second language in Kenya. The obtained results indicated that farmers came from two main regions of the county: the northern part (54.7%, 76/139) and the southern part (45.3%, 63/139). Levels of awareness and adoption were insignificant between the two groups (χ2, p<0.05). A major obstacle to the adoption of this strategy was identified as feed challenge at 77.7%; (108/139) and market issue at 59.7%; (83/139). This study identified important aspects and limitations that should be considered when developing sustainable productivity development strategies for Kenyan pig farmers. To assist the sustainable growth of small-scale pig production, the authors suggest government measures that shield farmers against exploitation of feed and marketing components, as well as advocating for effective breeding to increase live born.

  • Examining the production parameters of European perch (Perca fluviatilis) juveniles under different lighting conditions
    149-153
    Views:
    200

    European perch (Perca fluviatilis) is a native predatory fish in Hungary, and a promising new species of fresh water aquaculture nowadays. The European perch can be characterized by a high stress sensitivity during the intensive rearing, thus the optimization of environmental conditions has significant importance in the early life stages of fish. The aim of our study was to determine whether the light intensity and darkening of the water by humic acid affect the survival and growth performance of European perch juveniles. The experiment lasted for 28 days. Rectangular aquariums were arranged in 3 lines, the test environment consisted of 24 units. The experiment was set up with 10–10 fish per aquarium, total of 240 individuals. The average wet body weight of the fish at the start of the experiment was 1.69 grams. During the experiment, 6 treatments in 4 replicates were set up. In the first row, we set up 305.6±66.0 LUX (L), in the second row 118.0±24.4 LUX (C), and in the third row (D) 17.0±8.6 LUX illumination was set up. In each row the water of four aquariums were darkened by the addition of humic acid (H) (L, LH, C, CH, D, and DH). At the end of the experiment high survival rate was observed in all treatments. Examining the survival rate, the best results were found in the strongly illuminated treatments (L; LH- SR%=100±0.00). The observed mortality was caused by cannibalism. Regarding the individual body weight, the best results were shown by the treatments where the aquariums were illuminated with lower light intensity (C: 4.66±0.33 grams) and the aquarium water was darkened by humic acid (CH: 4.93±0.15 grams). The results of the C and CH groups were significantly better compared to the other treatments, however, they did not differ statistically from each other. The darkening of the water had a positive effect on the individual body weight of fish reared under full light (L: 3.73±0.28 grams; LH: 4.33±0.28 grams), whereas in the case of fish reared in the lowest illumination, the addition of humic acid did not affect the results (D: 3.78±0.15 grams; DH: 3.80±0.26 grams). In case of SGR (C: 3.64%/day and CH: 3.74%/day) and FCR (C: 0.84 g/g and CH: 0.78g/g) the best results were obtained by the C and CH treatments, also.

  • Microbial assessment of potential functional dairy products with added dried herbs
    59-63
    Views:
    133

    The market of dairy products is a dynamically developing sector of the food industry. Potential, functional dairy products, made by adding herbs or spices, will have antimicrobial and antioxidant effect due to the active biochemical agents of the plant additives. Furthermore, these active components will widen the storage life of food products and enhance their organoleptic properties too. We worked out a technology for creating fresh cheeses using a gentle pasteurizing method by treating the mixture of raw milk and 1.5% fat contained in commercial milk. As herb additives, we used citronella (Melissa officinalis), and peppermint (Mentha x piperita) harvested by us and dried them via Tyndall-method in convective dryer on 40 °C for 5.5 hours per day. The drying period took three days. We bought dried citronella and mint from the supermarket, which were dried by ionizing radiation, to compare the microbiological pollution with the herbs dried by us.

    The main target of this research was to create a microbiologically stable, potential functional dairy product. However, because of the bad quality of the raw milk and the gentle heat treatment we used for sterilizing bulk milk, or else, cheeses were not safe for human consumption. As a consequence, we need further studies to modify our technology and get a microbiologically stable product.

  • Age-Related Anatomical and Morphological Development of the Ruminant Stomach in Kids
    55-56
    Views:
    134

    We observed the anatomical and morphological development of each compartment of the ruminant stomach in 3. 6. and 14 week old kids. Weaning from milk to roughage foraging, depending on the kids’ ages, stimulated the development of the rumen and reticulum, and decreased the abomasum portion. A 3 week old kid’s rumen has dense and thin papillas but, with advancing age and with roughage foraging, the number of the papillas on cm2 decreases and their width increases. The omasum tertiary laminae and especially the quaternary laminae are observable only in the advanced age categories.

  • Effect of molybdenum treatment on the element uptake of food crops in a long-term field experiment
    75-79
    Views:
    167

    Molybdenum, as a constituent of several important enzymes, is an essential microelement. It can be found in all kind of food naturally at low
    levels. However, environmental pollution, from natural or anthropogenic sources, can lead to high levels of the metal in plants. Our study is based on long-term field experiments at Nagyhörcsök, where different levels of soil contamination conditions are simulated. Plant samples were collected from the experiment station to study the behavior of elements: uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop. In this study, we present the effect of molybdenum treatment on the uptake of other elements. Molybdenum is proved to be in an antagonist relationship with copper and sulphur, while molybdenum-phosphorus is a synergist interaction. However, in most of the plants we studied, increasing molybdenum-treatment enhanced cadmium uptake. We found the most significant cadmium accumulation in the case of pea, spinach and red beet. 

  • Bacteria in the milk of sheep with or without mastitis- mini Review
    47-52
    Views:
    373

    From a nutritional point of view, sheep milk is more valuable than cow and goat milk and the interest for sheep milk is increasing in many countries. However, sheep milk is easily contaminated during milking, handling, and transport and it is an ideal medium for bacterial propagation. Consequently, sheep milk spoils quite quickly. The proper, clean handling of milk is not only of sanitarian interest, but it also serves the farmers’ interests, because contaminated milk may not be distributed, and is unsuitable for producing good quality products. Following this technological trend, this review addresses the bacterial composition of sheep milk with and without mastitis. Even though sheep milk contains a lot of bacteria, this review article highlighted total plate count, Enterobacteriaceae, coliform, Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Campylobacter, Salmonella spp. and Streptococcus spp. Mastitis in sheep is a vital cause of mortality, reduction in milk production and early culling. The reported risk factors for mastitis in sheep were age, a case of mastitis, breed, husbandry systems, and location. The main priority should be implementation of programs to minimize human pathogenic bacteria and mastitis in raw ewe milk.

  • Changes of some soil chemical and microbiological characteristics in a long-term fertilization experiment in Hungary
    253-265
    Views:
    330

    Agricultural management practices – directly or indirectly – influence soil properties.

    Fertilization rates and crop rotation can strongly affect soil pH, soil nutrient supply and soil organic matter content due to the changes of microbial processes. The objective of this study was to compare the effects of different fertilization doses in monoculture and tri-culture of maize (monoculture: only maize grown since 1983, tri-culture: it is a three-year crop rotation system: pea – winter wheat – maize) on selected soil characteristics. The long-term fertilization experiments were set up in 1983 in Eastern Hungary. These experiments are situated west of Debrecen in Hajdúság loess region, on calcareous chernozem (according to WRB: Chernozems).

    The test plant was maize (Zea mays L.). One-one pilot blocks were selected from monoculture and tri-culture of the long-term experiments. The observed soil samples were taken in the 30th year of the experiment, in 2013. The doses of NPK fertilizers increased parallel together, so the effects of N-, P- and K-fertilizers cannot be separated.

    With the increasing fertilizer doses, the soil pH has decreased in both crop production systems and, in parallel, the hydrolytic acidity has significantly increased. A close negative correlation was proved between the pHH2O, pHKCl and hydrolytic acidity. An increased nutrient content in soil was recorded in every NPK treatment and the available phosphorus and nitrate content increased in higher proportion than that of potassium. Of the measured parameters of C-and N-cycles, fertilization has mostly had a positive effect on the microbial activity of soils. Besides the effects of fertilizer doses, correlation were looked for between soil microbiological properties. Evaluating the ratios among the measured parameters (organic carbon and microbial biomass carbon, OC/MBC ratio; carbon-dioxide and microbial biomass carbon; CO2/MBC proportion), the fertilization rate seems to be favoured by the increase of amounts of organic compounds

  • Monitoring the oxygen level in the Szarvas-Kákafok Deadarm
    170-173
    Views:
    86

    The water quality of the Szarvas-Békésszentandrás Dead Körös is generally meso-eutrophic, and meso-saprobic. However, particularly
    under higher temperature conditions, the water body may change toward the eutrophic state, even algal blooms could be observed
    previously.
    The present measurements were conducted during a two week period, twice a day. Three water samples were taken horizontally, from
    the surface, bottom and the middle of the water body. The samples were examined in situ. The oxygen content, the temperature, the pH and
    the conductivity were measured by potentiometric methods.
    Increasing pH was detected in correlation to the temperature, which indicated a rising photosynthetic activity. Also, the O2
    concentration showed high variations, especially, when the fresh water supply from the river was stopped, due to a small flood in the river
    Körös.
    These results indicate the increasing eutrophication processes in the deadarm, and the high load and instability of the ecosystem.

  • Examination of drought stress of two genotype maize hybrids with different fertilization
    53-57
    Views:
    129

    In the growing season of 2019, we analysed stress resulting from climatic factors on maize hybrids of different genotypes, with the aim of gaining a better understanding of the physiological responses of each hybrid, which might support the elaboration of a cost-effective irrigation plan.

    Our experiments were carried out at the Látókép Experimental Station of the University of Debrecen on calcareous chernozem soil in a small-plot long-term field trial with strip plot design. In the scope of the experiment, N-fertilizer doses were applied as basic fertilizer and top-dressing in addition to the non-fertilized (control) treatment. The 60 and 120 kg N/ha doses applied as basic fertilizers in the spring were followed by top-dressing in the V6 phenophase with a +30 kg N/ha dose. Measurements were carried out with the involvement of the Renfor early (FAO 320) and Fornad (FAO 420) late maturity hybrids-

    The stomata of the plants became more and more closed with the progression of the phenological phases; their stomatal conductance decreased. However, the hybrids responded differently to environmental stress. In the case of the Renfor hybrid, the highest conductance (669 mmol/m2-s) was recorded in the V12 phenophase with the 150 kg N/ha treatment. The stomata were more open due to the high turgor pressure, allowing plants to evaporate properly. The plant was in its worst physiological condition on 2nd July, at the time of the appearance of the last leaf in the case of the 120 kg N dose (224 mmol/m2-s). The value measured in the V12 phenophase has already shown that the stomata were closing due to the self-regulating system of the plant. It would have been necessary to dispense irrigation water following the measurement. This confirms the finding that water stress can be prevented by measuring stomatal conductance.

    In the case of the Fornad hybrid, stomatal conductance was the highest on 12th June (630 mmol/m2-s) in the 90 kg N/ha treatment and it was the lowest (183 mmol/m2-s) in VT (emergence of the last leaf) phenophase in the 60 kg N/ha treatment. In this case, the appropriate time for applying irrigation water would have been early July, when the conditions for the plants were still adequate. Subsequently, the stomata began to close due to a reduction of the water resources available to them.

    There was a significant correlation between soil moisture and stomatal conductance, as well as between temperature and stomatal conductance.

  • Effect of Copper, Zinc and Lead and Their Combinations on the Germination Capacity of Two Cereals
    39-42
    Views:
    487

    The majority of researchers have studied the following group of microelements: B, Zn, Mn, Cu, Na, Co, Mo, I, Sn, Cl, Al, V, F, Cr, Hg, Cs, Li, Cd, As, Th, Rb, Cr, W, Ti, Sn, Se, Ba, Br. Sporadically, the following elements have been mentioned too: Au, Ra, Hg and Pb. In this study, the effects of copper treatments and their combination with zinc and lead microelements on the germination of maize and barley were investigated using different concentrations of these microelements. Six treatments were used: 1. Copper-sulphate (CuSO4) applied alone, 2. Zinc-sulphate (ZnSO4) applied alone, 3. Copper applied with zinc, 4. Lead-nitrate (Pb(NO3)2) applied alone, 5. Copper applied with lead and 6. Untreated control. Maize (Kiskun SC 297) and barley caryopsis were treated with copper and zinc solutions in the following concentrations: 0.03%, 0.003% and 0.0003%. Maize and barley caryopsis were treated with these solutions for 12 and 24 hours. Maize and barley caryopsis were also treated with lead solutions Pb(NO3)2 with different concentrations: 0.0005%, 0.005% and 0.05%. Maize and barley were treated with these solutions for 12 and 24 hours. In the combined treatments (3 and 5), the same concentration was used for each microelement as in treatments 1, 2 and 4. Control treatments were treated with water for both plant species. Our results showed that copper microelements significantly inhibit germination compared to the untreated control. The toxicity of copper is higher if concentration increases. Zinc microelements also inhibit germination, however its effect highly depends on the microelement concentration. Treatments of copper + zinc also inhibit germination. The two microelements applied together cause more phytotoxicity than they do alone. Lead is highly toxic to plants even in low concentrations. The toxic effect on germination dramatically increased when lead was applied with copper.

  • Influence of phytophagous mammals environment-forming activity on the soil invertase fermentative activity in conditions of mining impact region
    127-130
    Views:
    111

    Excretorial and fossorial activity of mammals is an important part of environment-forming activity. Mammals have influences on important biogeocenotic processes, especially on the soil processes. Determination the maintenance of soil invertase as one of diagnostic description the ecological state allowed defining limits of oscillation index in dump areas and in clean (control) native areas. The obtained results of the investigation indicate the soil depth, duration of experiment and type of area influence on soil invertase activity with the high statistical level of significance. Positive influence is revealed on invertase activity changing on dump areas, where an active excretorial and fossorial activity of phytophagous mammals was observed.

  • Long-term effect of soil management on the carbon-dioxide emission of the soil
    515-527
    Views:
    135

    CO2 emission from soils is one of the most important elements of the global carbon cycle, thus it has crucial rule in climate change. Each soil cultivation operation intervenes in the microbiological life of the soil, hence tillage is a factor through that the processes taking place in soil can be controlled. During the last decades, the organic material content of agricultural soils decreased to the half due to the intensive management resulting in the degradation of natural soil fertility. While intensive, plough-based tillage can cause soil degradation and erosion, the physical, chemical and biological status of the soil can be significantly improved through the application of conservation tillage methods. The results of long-term experiments prove that soil protective tillage enhances the  enrichment of organic matter in the top layer of the soil. In order to reveal the role of tillage systems in CO2 emission from the soil,  regular measurements were carried out in the plots with conventional and reduced tillage of the soil cultivation experiment of Research Institute of Karcag. Anagas CD 98 and Gas Alert Micro 5w infrared gas analysers were used to measure CO2-concentrations, and a specially developed method (consisting of a frame and a bowl) was applied to delimitate the measuring area. Most of the  measurements were done on stubbles after harvest in order to exclude root respiration. The weather conditions of the examined 10 years were very changeable providing a good chance to compare them to each other. We found the tillage operations resulting in  higher emission values in both tillage systems. On stubbles higher and more even emission was characteristic to reduced tillage due to the lower degree of soil disturbance and higher soil moisture content.

  • Impact of precision irrigation on the unit income of maize production
    157-162
    Views:
    80

    The study of the economic/economic impact of precision farming should be a priority area in digital agriculture, as the results, profitability, and efficiency indicators can have a significant decision-support effect on the development of both the agronomic and the technical regions of individual farms both in the longer and shorter term. Individual firms, companies, farmers, and family farms quantify the effectiveness of their farming processes. The modern age offers the possibility of digitally recording all the elements of farming technology, making it possible to analyse the cost-effectiveness of a farm more effectively and, in some cases, to carry out more detailed analyses. Nevertheless, the number of farms demonstrating their profitability with such precise economic calculations is still minimal.

    Our analyses were conducted on a 56,02 ha field of Balogh Farm-Tépe Ltd. The agricultural operations carried out were fully documented so that the inputs (seeds, fertilisers, pesticides, crop enhancers) were recorded in coordinates and kind, as well as the specific yields, grain moisture data, irrigation norms, and irrigation rotations. At the same time, the company's owner provided the data's monetary value. The main econometric indicators (yield, production value, cost of production, income, cost price) related to the evaluation of the enterprise management were evaluated along with the spatial data in the irrigated and non-irrigated tables. Our calculations show that a given year's climatic and market characteristics fundamentally determine the cost and income relations of a plot of land (and thus of an entire farm). In addition to additional inputs, introducing some elements of precision farming and intensification and increasing yields improves yield security and allows for excellent yield stability.

  • The effect of season on the microbiological status of raw milk
    95-99
    Views:
    182

    Many factors can influence the microbiological quality of raw cow’s milk. In this study, our aim was to determine whether there was any difference between the microbiological statuses of milk produced in different seasons. Samples were collected and analysed from five dairy farms in Hajdú-Bihar County, from February to November in 2019. During our studies, total plate count (TPC), coliform count and Staphylococcus aureus count of raw cow’s milk samples were determined.

    There was no significant difference (P>0.05) between the mean TPC values detected in the milk collected in winter and autumn, but that values were significantly (P<0.05) lower than in the milk samples collected in spring and summer. Similarly to the TPC, in the case of coliform bacteria the lowest mean colony count was detected in the samples collected in winter. The difference was significant (P<0.05), compared to the values observed in the samples collected in summer. S. aureus was detected in bulk milk of only two farms in excess of 1.0 log10 cfu/ml. Also in case of S. aureus, there was a significant difference (P<0.05) between the values observed in the samples collected in winter and in summer. Samples from spring and summer contained the highest amount of S. aureus.

    Based on the results of our studies, in the case of almost all farms the mean TPC, coliform and S. aureus counts were lower in the samples collected in winter, than in the samples collected in summer. The fact that the samples collected in winter contained the lowest amount of colonies could be attributed to the inhibition of growth of mesophilic microorganisms below 8 °C. Furthermore, the fact that we observed the highest colony counts in samples collected in summer, can be related to the heat stress of cows during the summer due to unfavorable weather conditions (high temperature and humidity).

  • Comparative study of special honey products and herbhoneys
    117-120
    Views:
    390
    Honey has a positive effect on human body due to its high content of biologically active substances (e.g. monosaccharides, vitamins, enzymes, amino acids, polyphenolic compounds). The properties of honey depend on its botanical origin due to the bioactive plant components, mainly secondary metabolites that are included in honey made by bees from nectar. Herbally infused honeys are delicious products that combine the therapeutic action of herbs and honey. Additionally, herbs can provide nutrient fortified syrup for honey bees and protect them against diseases and other ecological threats.
    The aim of this study was to define the physicochemical properties of multifloral honey, herb enriched natural honey and herbhoney samples. We measured the moisture content, pH value, electrical conductivity and proline content. Although great diversity was observed in the basic properties of the examined products. In our study, we found that the electrical conductivity shows the significant differ between the groups. All the samples, including the herbhoneys passes the quality standards of honeys.
  • The Effects of Corn Cobs in Feed
    51-54
    Views:
    117

    This study is part of a larger research work that aims to establish the usefulness of corn cobs, a low cost dietary resource, in the growth of ruminants. Corn cobs are found in large amounts in our country (8.2 mil. tons/year). Increasing the quantity of corn cobs to 50% of the diet in lambs resulted in a decrease by 14.57% in the concentrate intake that is needed to obtain one-kg weight increase. In addition, the diet costs were reduced by 16.33% (Mierliţă, 1999). Increasing the quantity of corn cobs to 20-50% of the diet also resulted in multiplication of bacteria from genus Ruminococcus, that are known to represent about 70-80% of the bacteria population in the rumen. In addition, an increased multiplication rate of large protozoas (i.e. Epidinium, Isotrichia, Diplodinium etc) was observed. This explains the high conversion rate of piruvic acid, a carbohydrate fermentation product, into acetic acid, whereas conversion of piruvic acid into propionic acid decreases. In addition, feed intake and the quantity of digested and absorbed fibers increased by 8.46% and 35.09%, respectively. Thus, a reduction in dietary concentrates needed as nutrient supplies was achieved.

  • Testing the antimicrobial activity of essential oils
    71-74
    Views:
    151

    The vapor phase of some essential oils proved to have antimicrobial activity. Utilization of the vapor phase of Eos is presently understood as one of the possible alternatives to synthetic food preservatives which could be used in the future. However, testing the vapor phase of EOs against microorganisms causing food-borne diseases (e.g. Salmonella enteritidis or Staphylococcus aureus) or food spoilage is relatively new. Consequently, due to the large number of known EOs, research on their antimicrobial activity is still largely in the phase of in vitro rather than in vivo testing. Moreover, no standard and reliable method for fast screening of a wide range of samples exists. Thus, the aim of this study is to show results concerning tests of the antimicrobial activity of EOs against S. enteritidis or S. aureus, which were conducted by two modifications of the disc volatilization method we developed. The lately developed method has the potential to become widely used for fast screening of EO antimicrobial activity in the vapor phase.

  • The effect of breed and stage of lactation on the microbiological status of raw milk
    37-45
    Views:
    340

    The microbiological quality of the milk is important not only for food safety, but it can also influence the quality of dairy products. The microbiological status of raw cow milk can be influenced by many factors. Our aim was to determine whether there was a difference between the microbiological quality of milk of two different cow breeds (Holstein Friesian and Jersey) kept and milked in the same conditions, and how the microbiological quality of the raw cow milk changed during lactation (beginning, mid, and end). Samples were taken and analysed in July, August and September in 2018 from two dairy farms in Hajdú-Bihar county. During the conducted studies, the total plate count (TPC), the coliform count, the Staphylococcus aureus count and the coagulase-negative Staphylococcus (CNS) count of raw milk samples were determined.

    There was no significant difference (P>0.05) between the milk of the Holstein Friesian and Jersey breeds in the case of TPC. However, the mean coliform count of milk samples taken from Holstein Friesian cows was significantly lower (P<0.05) than the mean coliform count of milk samples taken from Jersey cows. S. aureus was detected in one of the twelve milk samples taken from Holstein Friesian cows, and in two of the eleven milk samples taken from Jersey cows. CNS was found in larger amount in milk samples taken from Holstein Friesian cows, and the difference was significant (P<0.05). Both TPC and CNS count were significantly higher (P<0.05) in individual milk samples taken at the end stage of lactation, than in samples taken in the earlier stages of lactation from Farm “A”. However, in the case of Farm “B”, there was no significant difference (P>0.05) in colony counts at different stages of lactation. S. aureus was only present in milk samples that collected from cows, which were at the beginning and middle stages of lactation. Testimg the hemolysin production ability of S. aureus strains isolated from the raw milk samples, only weak hemolysis was observed on blood agar. In case of antibiotic resistance testing, it was found that all strains were susceptible to cefoxitin, chloramphenicol, clindamycin, erythromycin, gentamicin, penicillin G, tetracycline and trimethoprim/sulphamethoxazole.

    Based on the results of our studies, staphylococci were detected in a higher amount in the milk of Holstein Friesian cows, and coliform bacteria were detected in a higher number in the milk of Jersey cows. Summing up the results of the milk samples taken from the different stages of lactation in one of the farms, it can be concluded that higher TPC and CNS count could be detected at the end stage of lactation than in the samples taken from the earlier stages of lactation. The fact that at the end of lactation the microorganisms could be detected in a higher colony count may be related to the fact that teats could be damaged during lactation by the milking machine, which increased the chance of imvading the microorganisms into the udder.

  • Genetic diversity of the Hungarian draft horse assessed by mitochondrial DNA
    29-32
    Views:
    253

    Hungarian draft is a horse breed with a recent mixed ancestry. It was developed in the 1920s by crossing local mares with draught horses imported from France and Belgium. To genetically characterize the breed and to set up the basis for a conservation programme, we have employed a molecular marker: a 256-bp D-loop mitochondrial DNA fragment. We analyzed 124 horses representing Hungarian draft horses to assess the maternal phylogeography of the breed. Sequence analysis of a 256-bp segment revealed a total of 34 haplotypes with thirty-four polymorphic sites. High haplotype and nucleotide diversity values (Hd=0.953±0.001; π=0.024±0.001) were detected. The average number of pairwise differences were k=5.998. This breed counts 800 mares today, and only survive due to breeding programmes, this way each haplotype frequency depends on the extent to which mares are involved into the breeding. The reduced number of surviving maternal lineages emphasizes the importance of establishing a conservation plan for this endangered breed. Due to the revealed 34 polymorphic sites we could presuppose twelve maternal linages, which could be a first step for making a breeding programme.

  • Routine microscopy examination of faecal samples as a tool for detection of common gastrointestinal parasites: a preliminary report from two Hungarian farms
    63-66
    Views:
    157

    Gastrointestinal parasitism in ruminant animals is a cause of major economic loss incurred by the livestock industry. Regardless of the frequency of the adopted therapeutic and prophylactic deworming strategies, the parasitic burden in a farm should be assessed regularly. One of the most widely used techniques to do so is the microscopic faecal egg examination and faecal egg counting method. Despite the technique being almost a century old from its first adoption, the principle behind the newer techniques of faecal egg examination is the same. This technique is still being used in routine farm screening and monitoring gastrointestinal parasitic load and faecal egg count reduction testing to assess the anthelmintic efficacy of the drugs used. Thus, the tool remains a choice for preliminary screening for important parasites and the subsequent deworming strategy. Our study here was part of a larger survey on the treatment efficiency as well as a broad epidemiological study of the trichostrongyle parasites in Hungary. We present a preliminary report on the detection of common gastrointestinal parasites from two farms in Hungary, including a species-specific confirmatory microscopy for Haemonchus contortus eggs.