Search
Search Results
-
Phytoplasma diseases of grapevine and the possible measures to control them
37-43.Views:329Phytoplasmas are a special group of phloem-living pathogens in several plant species. Grapevine yellows (GY) is a term for phytoplasma diseases occurring on Vitis vinifera and inducing the same or very similar symptoms and causing severe losses worldwide. Flavescence Dorée (16SrV) phytoplasma (FD, species name: ‘Candidatus Phytoplasma vitis’) is considered a quarantine pest in several countries due to its epidemic character and high economic loss it provokes. The leafhopper Scaphoideus titanus is the univoltine and monophagous vector of FD. Bois noir disease caused by stolbur (16SrXII-A) phytoplasma (species name: ‘Candidatus Phytoplasma solani’) is described under different disease names in different countries. Hyalesthes obsoletus (Cixiidae) is the only proved polyphagous vector of BN. However, distribution of BN disease is increasing also on those areas where H. obsoletus is not prevalent or only in a very low number. Therefore the presence of other vectors cannot be concluded. The ‘Tuf-a’ type Stolbur phytoplasma is associated with stinging nettle (Urtica dioica) and the tuf-b type one to field bindweed (Convolvulus arvensis). There are only preventive control measures against phytoplasmas: the use of pathogen-free propagating material, hot water treatment of propagating material, as well as control of vectors and weeds. S. titanus can be efficiently controlled by insecticide treatments. However, in case of H. obsoletus, insecticides are not effective due to the biological characters and feeding habits of the vector.Weed control can reduce H. obsoletus specimen and their abundance to a certain extent. Extensive research is needed on wild hosts of GY phytoplasmas especially on BN phytoplasma and its vectors to the better understanding of their epidemiology.
-
Detection and identification of phytoplasmas in peach based on woody indexing and molecular methods
35-41.Views:170Symptoms resembling phytoplasma disease have been observed on peach trees in a seed-source plantation of stone fruits in south Hungary quite recently. In this publication we report on the results of woody indexing of symptomatic peach trees on GF 305 indicator in the field and under greenhouse conditions as well as on molecular studies. Phytoplasma infection detected on GF 305 indicators in greenhouse and field indexing was confirmed by PCR. Nested PCR was conducted using universal primer pairs followed by group and subgroup specific primers for the second amplification. RFLP analysis of nested PCR products was performed using Rsal restriction enzyme. Based on the results of molecular studies it can be concluded that phytoplasmas, belonging to the European stone fruit yellows subgroup (16SrX-B) were identified in peach trees. Further studies on symptomatic peach trees originating from different parts of Hungary are in progress.
-
Primers designed for the detection of grapevine pathogens spreading with propagating material by quantitative real-time PCR
21-30.Views:291Several grapevine pathogens are disseminated by propagating material as systemic, but latent infections. Their detection and identification have a basic importance in the production and handling of propagating stocks. Thus several sensitive and reliable diagnostic protocols mostly based on molecular techniques have been developed. Of these methods quantitative real-time PCR (q-PCR) has recently got an emerging importance. Here we collected primer data for the detection and identification of grapevine pathogens which are important in the production of propagating stocks by q-PCR. Additional novel techniques that use DNA amplification, hybridization and sequencing are also briefly reviewed.
-
Conventional PCR primers for the detection of grapevine pathogens disseminated by propagating material
69-80.Views:307Polymerase chain reaction driven by sequence specific primers has become the most widely used diagnostic method to detect and identify plant pathogens. The sensitive and cost-effective pathogen detection is exceptionally important in the production of propagating material. In this paper we have collected primer sequence data from the literature for the detection of the most important grapevine pathogens disseminated by propagating stocks by conventional polymerase chain reaction. Basic protocols to obtain template nucleic acids have also been briefly rewieved.
-
A complex system for the production of pathogen-free grapevine propagating material
59-62.Views:248The use of pathogen-free planting stock for new vineyard establishment is a key component in the maintenance and expansion of vine and quality table grape production. The success of the necessary changes in the structure of the grape industry is forced by the globalization process, the climate change, the rediscovery of autochton varieties as well as breeding of new tolerant and resistant varieties. The renewal of vineyards largely depend on the availability of planting stocks. Serbia and Hungary found a common interest in establishing pathogen-free stock materials from newly breed resistant varieties and clonal selections of varieties which are traditional in the Serbian-Hungarian border area. During a cross-border cooperation program a complex system for the production of pathogen-free grapevine propagating material was established. Using heat therapy, in vitro shoot tip culture and traditional and molecular diagnostic techniques new pathogen-free stock materials were established from 26 varieties. They have been or will be tested for the presence of most important grapevine viruses, phytoplasmas, as well as bacterial and fungal pathogens. The complex system applying green grafting for indexing on grapevine indicators can shorten the duration of the procedure from 4 years to two-three years.