Articles

Effect of a nanotechnology-based foliar fertilizer on the yield and fruit quality in an apple orchard

Published:
2021-07-21
Authors
View
Keywords
License

Copyright (c) 2021 International Journal of Horticultural Science

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

How To Cite
Selected Style: APA
Csihon, Á., Gonda, I., & Holb, I. J. . (2021). Effect of a nanotechnology-based foliar fertilizer on the yield and fruit quality in an apple orchard. International Journal of Horticultural Science, 27, 29-32. https://doi.org/10.31421/ijhs/27/2021/9809
Abstract

Nutrient management is a determining element of the technology in fruit production. Significance of foliar fertilization has been increased continuously over the last years, as it can improve directly the vegetative and generative performance of the trees. In this study we aimed to evaluate the effect of a nanotechnology-based foliar fertilizer (Bistep) with 1, 3, and 5 l/ha dosages on the yield and fruit quality parameters in an apple orchard during 2016 and 2018. According to our results, crop load increased with 29% in the third year of the experiment with the application of 5 l/ha Bistep treatment compared to the control treatments. Fruit weight was also improved in each year, as values of fruit weight in all treatments were higher than the control one (3.0-13.0% growth). Fruit surface color increased with 2-18% due to the foliar fertilizer. During the three years, leaf length was 9.5-9.9 mm on the control trees, as 9.8-10.4 mm was measured on the fertilized ones. In conclusion, yield and fruit quality can be improved in apple orchard using a nanotechnology-based foliar fertilizer.

References
  1. Abraham, A., Kannangai, R., Sridharan, G., (2008): Nanotechnology: a new frontier in virus detection in clinical practice. Indian J. Med. Microbiol. 26(4) 297–301.
  2. Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., Wiesner, M. R. (2009): Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnology 4. 634–664.
  3. Baptista, F. R., Belhout, S. A., Giordani, S., Quinn, S. J. (2015): Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev. 44(13): 4433–4453.
  4. Basak, A., Mikos-Bielak, M. (2008): The use of some biostimulators on apple and pear trees. In: Z.T. Dabrowski (ed.): Biostimulators in modern fruit agriculture. 7–17.
  5. Błlaszczyk, J. (2008): Quality of ‘Conference’ pears as affected by Goëmar BM 86 and Fruton. In: Biostimulators in modern agriculture: Fruit crops. Ed.: Dabrowski, Z. T.) 18–24.
  6. Csihon, Á., Illés, A., Szabó, A., Bicskei, D. K. (2013): Biostimulátor készítmények összehasonlító vizsgálata intenzív almaültetvényben. Kertgazdaság 45(4): 20–27.
  7. Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., Duhan, S. (2017): Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports 15. 11–23.
  8. Emadian, S. E. (2017): Physiological Responses of Loblolly Pine (Finustaeda L.) to Silicon and Water Stress, Texas A &M Univ, college station, TX, 2017, pp. 27–37 (Ph.D. Thesis, Diss. Abst.AAC8815865).
  9. Fischer, H. M., Schmadlak, J., Fischer, C. M. (2000): Apple Tree Named ‘Pinova’. United States Patent. Pub. No.: US00PP11601P. Patent Number: 11,601
  10. Ghormade, V., Deshpande, M. V., Paknikar, K. M., (2011): Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29. 792–803. https://doi.org/10.1016/j.biotechadv.2011.06.007.
  11. Gogos, A., Knauer, K., Bucheli, T. D. (2012): Nanomaterials in Plant Protection and Fertilization: Current State, Foreseen Applications, and Research Priorities. J. Agric. Food Chem. 60. 9781-9792. https://doi.org/10.1021/jf302154y
  12. He, X., Deng., H., Hwang, H. (2018): The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis 27. 1-21. https://doi.org/10.1016/j. jfda.2018.12.002
  13. Hudina, M., Solar, A., Stampar, F. (2003): Does foliar nutrition influence the pear fruit quality? International Journal of Horticultural Science. 9(2): 25-28. https://doi.org/10.31421/ IJHS/9/2/386
  14. Khot, L. R., Sankaran, S., Maja, J. M., Ehsani., S., Schuster, S. W. (2012): Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot. 35. 64–70. https://doi.org/10.1016/j.cropro.2012.01.007
  15. Nagy, P. T. (2012): Bioregulátor kísérletek eredményei és gyakorlati hasznosítási tapasztalatai a gyümölcstermesztésben. Debreceni Egyetem. AGTC MK Kertészettudományi Intézet. 97 p.
  16. Nagy, P. T., Ambrus, A., Nyéki, J., Soltész, M., Szabó, Z. (2012): Effect of foliar spraying with algae suspension on leaf and fruit quality parameters of apple varieties. International Journal of Horticultural Science. 18(1): 35-38. p. https://doi.org/10.31421/IJHS/18/1/991
  17. Nagy, P. T., Csihon, Á., Szabó, A. (2019): Effects of algae products on nutrient uptake and fruit quality of apple. National resources and sustainable development 9(1): 80-91. p. https://doi.org/10.31924/nrsd.v9i1.026
  18. Parisi, C., Vigani, M., Rodríguez-Cerezo, E. (2015): Agricultural Nanotechnologies: What are the current possibilities? Nano Today 10. 124-127. p. https://doi.org/10.1016/j.nantod.2014.09.009
  19. Peteu, S.F., Oancea, F., Sicuia, O.A., Constantinescu, F., Dinu, S. (2010): Responsive polymers for crop protection. Polymers 2(3): 229–251. https://doi.org/10.3390/ polym2030229
  20. Rao, P. V., Gan, S. H. (2015): Recent advances in nanotechnology-based diagnosis and treatments of diabetes. Curr. Drug Metab.16, 371–375. https://doi.org/10.2174/ 1389200215666141125120215
  21. Santoso, D., Lefroy, R.D.B., Blair, G. J. (1995): Sulfur and phosphorus dynamics in an acid soil/crop system. Aust. J. Soil Res. 33. 113–124. https://doi.org/10.1071/SR9950113
  22. Shojaei, T. B., Salleh, M. A. H., Tabatabaei, M., Mobli, H., Aghbashlo, M., Rashid, S. A., Tan, T. (2019): Applications of Nanotechnology and Carbon Nanoparticles in Agriculture. In Micro and Nano Technologies, Synthesis, Technology and Applications of Carbon Nanomaterials, Editor(s): Rashid, S. A., Othman, R. N. I. R., Hussein, M. Z. 247-277. p. https://doi.org/10.1016/B978-0-12-815757-2.00011-5.
  23. Sing, P., Kim, Y. J., Zhang, D., Yang, D. C. (2016): Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends in Biotechnology 34(7): 588-599. p. https://doi.org/10.1016/j.tibtech.2016.02.006
  24. Solar, A. (2003): The effects of foliar nutrition containing various macro and microelements on the growth and development of young grafted walnut (Juglans regia L.) plants. International Journal of Horticultural Science, 9(2): 33-37. https://doi.org/10.31421/IJHS/9/2/388
  25. Stampar, F., Solar, A., Hudina, M. (2003): Influence of foliar nutrition on apple production. International Journal of Horticultural Science. 9(2): 15-18. https://doi.org/10.31421/ IJHS/9/2/384
  26. Tagliavini, M., Drahorad, W., Dalla Via, J. (2002): Preface. Acta Horticulturae 594. https://doi.org/10.17660/ActaHortic. 2002.594.
  27. Zheng, L., Hong, F., Lu, S., Liu, C. (2005): Effect of nano-TiO(2) on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 104. 83–91. https://doi.org/10.1385/BTER:104:1:083
  28. Yao, D., Chena, Z., Zhao, K., Yang, Q., Zhang W. (2013): Limitation and challenge faced to the researches on environmental risk of nanotechnology. 2013 International Symposium on Environmental Science and Technology. 149-156. p. https://doi.org/10.1016/j.proenv.2013.04.020
  29. Wilson, M.A., Tran, N.H., Milev, A.S., Kannangara, G.S.K., Volk, H., Lu, G.Q.M., (2008): Nanomaterials in soils. Geoderma 146. 291–302. https://doi.org/10.1016/j.geoderma. 2008.06.004