Vol. 28 (2022)
Articles

Vegetative and generative properties of two apple cultivars ‘Galiwa’ and ‘Story Inored’ in a multi-row system

Published July 27, 2022
A. Csihon
University of Debrecen, Faculty of the Agricultural and Food Sciences and Environmental Management, Institute of Horticulture, 138. Böszörményi str., Debrecen, H-4032, Hungary
I. Gonda
University of Debrecen, Faculty of the Agricultural and Food Sciences and Environmental Management, Institute of Horticulture, 138. Böszörményi str., Debrecen, H-4032, Hungary
I. J. Holb
University of Debrecen, Faculty of the Agricultural and Food Sciences and Environmental Management, Institute of Horticulture, 138. Böszörményi str., Debrecen, H-4032, Hungary
pdf

APA

Csihon, A., Gonda, I., & Holb, I. J. (2022). Vegetative and generative properties of two apple cultivars ‘Galiwa’ and ‘Story Inored’ in a multi-row system. International Journal of Horticultural Science, 28, 34–38. https://doi.org/10.31421/ijhs/28/2022/11310

In a five-year (2015-2019) study, some vegetative and generative peculiarities of two resistant apple cultivars (‘Galiwa’ and ‘Story Inored’) were assessed in a young orchard with a multi-row training system. Based on our research, cv. ‘Galiwa’ showed significantly weaker growth, than cv. ‘Story Inored’, which was manifested in lower trunk cross sectional area (TCSA) and lower tree height. Cultivar ‘Story Inored’ reached the optimal tree height (3.1 m) at the age of four, but cv. ‘Galiwa’ could not achieve it neither in five-year-old trees (2.7 m). Cultivar ‘Galiwa’ showed 28.4-32.6 t/ha calculated average yield, while cv. ‘Story Inored’ produced 41.3-102.7 t/ha. Larger fruit size was found in cv. ‘Galiwa’ (72.7-79.1 mm) and smaller in cv. ‘Story Inored’ (66.9-69.2 mm). The fruit surface color was under 50% for cv. ‘Galiwa’ (43-49%), meanwhile cv. ‘Story Inored’ reached higher coloration (87-93%) and an excellent color intensity (4.8-5.0). Shape of cv. ‘Galiwa’ fruits was rather flat, than globular (0.83-0.84 shape index), as cv. ‘Story Inored’ was more elongated (0.95-1.00 shape index).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
  1. Alins, G., Alegre, S., Batllori, L., Carbó, J., Escudero-Colomar, L., Iglesias, I., Lordan J. Vilajeliu, M. (2013): Manzanos en agricultura ecológica, una opción para diferenciarse. Revista Vida Rural 371: 32-35.
  2. Anton, G., Willen, J. S. (2014): The effect of temperature, region and season on red color development in apple peel under constant irradiance. Scientia Horticulturae 173:79–85. https://doi.org/10.1016/j.scienta.2014.04.040
  3. Bonany, J., Buehler, A., Carbó, J., Codarin, S., Donati, F., Echeverria, G., Egger, S., Guerra, W., Hilaire, C., Höller, I., Iglesias, I. (2013): Consumer eating quality acceptance of new apple varieties in different European countries. Food Quality and Preferences 30(2): 250–259. p.
  4. Campbell, J. E. (1999): High density production system for apples. Horticultural Research & Development Corporation. Gordon NSW. 14. p.
  5. Cullell, E. G. (2020): Poma de muntanya: diversificació econòmica i agricultura de proximitat. Dossier Téchnic. La poma de muntanya. 2020(105): 2-31.
  6. Csihon, Á., Holb, I., Gonda, I. (2015): Growing characteristics of apple cultivars and canopies. International Journal of Horticultural Science 21(1-2): 7-10. p. https://doi.org/10.31421/IJHS/21/1-2./1150
  7. Csihon, Á., Gonda, I. (2016): Fruit coloration of apple cultivars. International Journal of Horticultural Science 22(1-2): 11-14. https://doi.org/10.31421/IJHS/22/1-2./1176
  8. Csihon, Á., Gonda, I.,, Vámos, P., Barna, D., Holb. I. J. (2019): A preliminary study on some features of two new resistant apple cultivars in a multi-row planting system. International Journal of Horticultural Science 25(3-4): 11-14. https://doi.org/10.31421/IJHS/25/3-4/3929
  9. Csihon, Á., Gonda, I., Szabó, Sz., Holb, I. (2022): Tree vegetative and generative properties and their inter‑correlations for prospective apple cultivars under two training systems for young trees. Horticulture, Environment and Biotechnology 63: 325-339. https://doi.org/10.1007/s13580-021-00405-3.
  10. Denzel, C. (2014): Abgeprüft – Interessantes aus der Sortenzüchtung. Öko-Obstbau 2014(1): 4-6. p.
  11. Franck, L., Kellerhals, M. (2010): Galiwa: Neue süsse, schorfresistente ACW - Apfelsorte. Schweizerische zeitschrift für obst- und weinbau 24(10): 10-13.
  12. Gandubert, B. (2017): Essais porte greffe et materiel vegetal pommier & Poirier. L’agriculture biologique en Pays de la Loire. 2017 December, 151: 1-4.
  13. Guerra, W. (2014): Le nuove varietà resistenti alla ticchiolatura. Frutticoltura 11: 26-32.
  14. Guerra, W. (2017): The hunt for new future apple varieties. European Fruit Magazine. 2017. (5): 6-13.
  15. Guerra, W., Sansavini, S. (2012): Gala e le sue mutazioni: una storia senza fine. Frutticoltura 11:26–32.
  16. Gregori, R., Folini, L., Berra, L., Walter, G., Sansavini, S. (2015): Lista del melo 2015, le varietà per i nuovi impianti. L’Informatore Agrario 46: 46-50.
  17. Hampsen, C. R., Sanford, K., Cline, J. (2002): Preferences of Canadian consumers for apple fruit size. Canadian Journal of Plant Science 82(1): 165–167.
  18. Höller, I., Walter, G., Gummerer., K. (2017): Spezifisches Gewicht neuer Apfelsorten. Erwerbs-Obstbau 59: 85–91. DOI 10.1007/s10341-016-0316-4
  19. Jackson, J. E., Palmer, J. W. (1972): Interception of light by model hedgerow in relation to latitude, time of year and hedgerow configuration and orientation. Journal of Applied Ecology 9(2): 341-357. https://doi.org/10.2307/2402436
  20. Kays, S. J., (1999): Preharvest factors affecting appearance. Postharvest Biology and Technology 15(3): 233–247.
  21. Kellerhals, M. (2012): Apple tree named ‘Galiwa’. Plant Patent Application Publication. Pub. N0.: US 2012/0131706 P1.
  22. Kiem, U. (2021): Varietà di melo resistenti in Alto Adige – produzione biologica. Frutta e Vita. 2021(5): 16-19.
  23. Kierczyńska, S., Wawrzyniak, J. (2004): The level of apple production costs and the economic effects in the selected orchard management systems. Journal of Agribusiness and Rural Development 3(359): 83-89.
  24. Licznar­Małańczuk, M. (2004): Influence of planting and training systems on fruit yield in apple orchard. Journal of Fruit and Ornamental Plant Research. (12): 97-104.
  25. Mantinger, H., Vigl J. (1999): I sistemi d’impianto del melo nel Nord Italia. Rivista di Frutticoltura e Ortofloricoltura. LXI(3): 2226.
  26. Musacchi, S., Serra, S. (2018): Apple fruit quality: Overview on pre-harvest factors, Scientia Horticulturae 234 (14): 409-430. https://doi.org/10.1016/j.scienta.2017.12.057.
  27. Papp, J. (2003): A gyümölcstermesztés általános kérdései. In: Gyümölcstermesztési alapismeretek. Szerk.: Papp, J. Mezőgazda Kiadó, Budapest. 11-25. p.
  28. Palmer, J. W. (1997): Apples light and orchard design for enhancement of yield and fruit quality. Proceedings from Conference ‘97: Searching for Quality. Joint Meeting of the Australian Avocado Grower’s Federation, Inc. and NZ Avocado Growers Association, Inc., 23-26 September 1997. J. G. Cutting (Ed.). 156-172 p.
  29. Palmer, J. W., Avery, D. J., Wertheim, S. J. (1992): Effect of apple tree spacing and summer pruning on leaf area distribution and light interception. Scientia Horticulturae 52: 303-312. p. https://doi.org/10.1016/0304-4238(92)90031-7
  30. Pitiot, C., Laurens, F. (2012): Apple tree named ‘Inored’. Plant Patent Application Publication. Pub. N0.: US PP22,794 P2.
  31. Robinson, T. L. (2011): Advances in apple culture worldwide. Rev. Bras. Frutic. Jaboticabal - SP, Volume Especial, E. 37-47. p.
  32. Robinson, T. L., Hoying, S., Sazo, M. M., Demarree, A., Dominguez, L. (2013): A vision for apple orchard systems of the future. New York Fruit Quarterly 21(3): 11-16.
  33. Rühmer, T. (2013): Sortenprüfung Resistente Apfelsorten - Erweiterung der zweiten Prüfstufe um Galiwa, Ladina und Natyra. Haidegger Perspektiven. 2013(2): 16-17.
  34. Soltész, M. (1997): Gyümölcsösök létesítése. In: Integrált gyümölcstermesztés. Szerk.: Soltész, M. Mezőgazda Kiadó, Budapest. 200-226. p.
  35. Sus J., Zeinerová R., Zíka L. (2018): Influence of the pruning system on the growth and productivity of slender spindle apple trees. Horticultural Science (Prague) 45: 55–63. https://doi: 10.17221/63/2017-HORTSCI
  36. Ugo, P. (2014): Agrintesa promuove la melicoltura biologica. Ortofrutta Notizie. September 2014. 7. p.
  37. Wagenmakers, P., S. (1991): Simulation of light distribution in dense orchard systems. Agricultural and Forest Meteorology 57: 13-25.
  38. Wertheim, S. J., Duyzens, M. J. J. P. (1986): Comparison of single-row and multi-row planting systems with apple, with regard to productivity, fruit size and color and light conditions. Acta Horticulturae. 160: 243-258. https://doi.org/10.17660/ActaHortic.1986.160.25
  39. Widmer, A., Krebsh, C. (2001): Influence of planting density and tree form on yield and fruit quality of ‘Golden Delicious’ and ‘Royal Gala’ apples. Acta Horticulturae. 557: 235-241. https://doi.org/10.17660/ActaHortic.2001.557.30
  40. Wünsche, J. N., Lakso, A. M., Robinson, T. L., Lenz, F., Denning, S. S. (1996): The basis of productivity in apple production systems: the role of light interception by different shoot types. Journal of the American Society for Horticultural Sciences 121(5): 886-893.