Search

Published After
Published Before

Search Results

  • Visualisation in geometry education as a tool for teaching with better understanding
    337-346
    Views:
    172

    In primary and secondary geometry education, some problems exist with pupils’ space thinking and understanding of geometric notions. Visualisation plays an important role in geometry education, and the development of pupils’ visualisation skills can support their spatial imagination. The authors present their own thoughts on the potential of including visualisation in geometry education, based on the analysis of the Hungarian National Core Curriculum and Slovak National Curriculum. Tasks for visualisation are also found in international studies, for example the Programme for International Student Assessment (PISA). Augmented reality (AR) and other information and communication technology (ICT) tools bring new possibilities to develop geometric thinking and space imagination, and they also support mathematics education with better understanding.

    Subject Classification: 97U10, 97G10

  • On four-dimensional crystallographic groups
    391-404
    Views:
    11
    In his paper [12] S. S. Ryshkov gave the group of integral automorphisms of some quadratic forms (according to Dade [6]). These groups can be considered as maximal point groups of some four-dimensional translation lattices in E^4. The maximal reflection group of each point group, its fundamental domain, then the reflection group in the whole symmetry group of the lattice and its fundamental domain will be discussed. This program will be carried out first on group T. G. Maxwell [9] raised the question whether group T was a reflection group. He conjectured that it was not. We proved that he had been right. We shall answer this question for other groups as well. Finally we shall give the location of the considered groups in the tables of monograph [4]. We hope that our elementary method will be useful in studying linear algebra and analytic geometry. Futhermore, 4-dimensional geometry with some visualisation helps in better understanding important concepts in higher-dimensional mathematics, in general.
  • Using the computer to visualise graph-oriented problems
    15-32
    Views:
    34
    The computer, if used more effectively, could bring advances that would improve mathematical education dramatically, not least with its ability to calculate quickly and display moving graphics. There is a gap between research results of the enthusiastic innovators in the field of information technology and the current weak integration of the use of computers into mathematics teaching.
    This paper examines what exactly the real potentials of using some mathematics computer software are to support mathematics teaching and learning in graph-oriented problems, more specifically we try to estimate the value added impact of computer use in the mathematics learning process.
    While electronic computation has been used by mathematicians for five decades, it has been in the hands of teachers and learners for at most three decades but the real breakthrough of decentralised and personalised micro-computer-based computing has been widely available for less than two decades. And it is the latter facility that has brought the greatest promise for computers in mathematics education. That computational aids overall do a better job of holding students' mathematical interest and challenging them to use their intellectual power to mathematical achievement than do traditional static media is unquestionable. The real question needing investigation concerns the circumstances where each is appropriate.
    A case study enabled a specification of advantages and obstacles of using computers in graph-oriented questions. Individual students' interviews revealed two less able students' reactions, difficulties and misinterpretations while using computers in mathematics learning.
    Among research outcomes is that the mathematical achievement of the two students observed improved and this makes teaching with computers an overriding priority for each defined teaching method.
    This paper may not have been realised without the valuable help of the Hungarian Eötvös State Grant.