Search

Published After
Published Before

Search Results

  • Developing a method to determine teachers’ and pupils’ activities during a mathematics lesson
    25-43
    Views:
    37
    Third-graders from nineteen classrooms (N = 316) were asked to draw a picture on a mathematics lesson. Based on these drawings we have developed a data analysing method that allows us to find out how pupils present both their teacher's and their classmates' activities in their drawings. Two inventories were formed that contain, respectively, teachers' and pupils' activities during a mathematics lesson as seen in the pupils' drawings. The first inventory contains 14 separate items organized into six groups that contain teacher activities like asking questions and giving feedback on mathematics. Ten of the items are related to teaching and the rest contain items like keeping order in addition to the teacher's location in the classroom. Respectively, pupils' activities are organized into five groups that contain altogether 22 items. These contain the activities of a single pupil, and also pupil-teacher and pupil-pupil discussions on mathematics.
  • Analysis of the affective factors of learning mathematics among teacher trainees
    225-254
    Views:
    37
    The Hungarian National Core Curricula gives primacy to the development of abilities and the practical application of knowledge. The task of the training programme is primarily to prepare teacher trainees for the teaching and educating profession. As teachers, they are going to plan, organize, help, guide, control and evaluate the learning of mathematics of individuals and groups of students from the age of 6 to 10 (12), and cultivate their mathematical skills, thinking and positive attitude towards any mathematical activities. In order to train educators who are able to meet the above requirements on high standard, it is necessary to update the teacher training programme based on the trainees' preliminary knowledge and motivation level.
    The key to learn about the child's mind and achieve conscious development is the systematization of factual knowledge and methodological awareness. The modern, flexible approach to subject pedagogy, based on pedagogy, psychology and epistemology, qualifies trainees to educate learners who understand and like mathematics. Therefore, it is essential to develop the trainees' positive approach to mathematics and arouse their demand for continuous professional improvement. (Programme of the four-year primary school teacher training, 1995.)
    In our research we are looking for ways of ascertaining the starting parameters which have influence on the planning of the studies of mathematics and subject pedagogy. In this article we introduce a questionnaire by the means of which we collected information on the trainees' attitude and its changing towards mathematics. With the help of the analysis of the answers we paint a picture of the ELTE TÓFK (Eötvös Loránd University, Faculty of Elementary and Nursery School Teacher's Training) third year students' attitude to the subject, and we compare it to the tendencies noticed in the mass education. The energy invested in learning is influenced by the assumption of the relevance and importance of the subjects. Therefore we considered it also our task to reveal. Besides the students' attitude toward mathematics and their assumption about their own competence we have collected data also on their performance in the subject. Summarising the research results we show the advantages of the questionnaire, and summarise the observations which would indicate need for methodological changes in the mathematics teacher training.
  • The Project Method and investigation in school mathematics
    241-255
    Views:
    39
    The Project Method (PM) is becoming more common in the teaching of mathematics. Most of the time, Project Method means solving open and relatively wide formulated problems for the application of particular mathematical topics and the solving of everyday life problems.
    At present many experts in the theory of teaching mathematics advocate teaching activities as the characteristic for most mathematical work in the classroom. Thus, there is a question: whether it is possible or eventual desirable to use the PM for solving genuine mathematical problems. This paper deals with this question and discusses the connection between the PM and investigation of new mathematical knowledge for students. Our experience has shown that the PM in connection with investigations can be a useful and effective approach to teaching mathematics.
  • The development of geometrical concepts in lower primary mathematics teaching: the square and the rectangle
    153-171
    Views:
    41
    Our research question is how lower primary geometry teaching in Hungary, particularly the concept of squares and rectangles is related to the levels formulated by van Hiele. Moreover to what extent are the concrete activities carried out at these levels effective in evolving the concepts of squares and rectangles.
    In the lower primary geometry teaching (classes 1-4) the first two stages of the van Hiele levels can be put into practice. By the completion of lower primary classes level 3 cannot be reached. Although in this age the classes of concepts (rectangles, squares) are evolved, but there is not particular relationship between them. The relation of involvement is not really perceived by the children.
  • Analyse von Lösungswegen und Erweiterungsmöglichkeiten eines Problems für die Klassen 7–11
    231-249
    Views:
    30
    Making several solutions for a problem i.e. the generalization, or the extension of a problem is common in the Hungarian mathematics education.
    But the analysis of a problem is unusual where the connection between the mathematical content of the task and of its different formulations is examined, solutions from different fields of mathematics are presented regarding the knowledge of different age groups, the problem is generalized in different directions, and several tools (traditional and electronic) for solutions and generalizations are presented.
    This kind of problem analysis makes it viable that during the solution/elaboration several kinds of mathematical knowledge and activities are recalled and connected, facilitating their use inside and outside of mathematics.
    However, an analysis like this is not unfamiliar to the traditions of the Hungarian problem solving education – because it also aims at elaborating a problem – but from several points of view.
    In this study, a geometric task is analysed in such a way.
  • Is it possible to develop some elements of metacognition in a Mathematics classroom environment?
    123-132
    Views:
    89

    In an earlier exploratory survey, we investigated the metacognitive activities of 9th grade students, and found that they have only limited experience in the “looking back” phase of the problem solving process. This paper presents the results of a teaching experiment focusing on ninth-grade students’ metacognitive activities in the process of solving several open-ended geometry problems. We conclude that promoting students’ metacognitive abilities makes their problem solving process more effective.

    Subject Classification: 97D50, 97G40

  • Nice tiling, nice geometry!?!
    269-280
    Views:
    38
    The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
    It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
    I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
    My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
    A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
    Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
    This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference.
  • A constructive and metacognitive teaching path at university level on the Principle of Mathematical Induction: focus on the students' behaviours, productions and awareness
    133-161
    Views:
    123

    We present the main results about a teaching/learning path for engineering university students devoted to the Principle of Mathematical Induction (PMI). The path, of constructive and metacognitive type, is aimed at fostering an aware and meaningful learning of PMI and it is based on providing students with a range of explorations and conjecturing activities, after which the formulation of the statement of the PMI is devolved to the students themselves, organized in working groups. A specific focus is put on the quantification in the statement of PMI to bring students to a deep understanding and a mature view of PMI as a convincing method of proof. The results show the effectiveness of the metacognitive reflections on each phase of the path for what concerns a) students' handling of structural complexity of the PMI, b) students' conceptualization of quantification as a key element for the reification of the proving process by PMI; c) students' perception of the PMI as a convincing method of proof.

    Subject Classification: 97B40, 97C70

  • The requirements in statistics education – comparison of PISA mathematical tasks and tasks from the mathematical textbooks in the field of statistics
    263-275
    Views:
    34
    This work presents the results of the analysis of both PISA items and Croatian mathematical textbooks in the field of statistics.
    The analysis shows that PISA's released statistics problems have in many ways different mathematical requirements from the requirements of textbook problems in the statistics chapters, with respect to the mathematical activities, complexity and in the forms of questions. The textbook analysis shows that mathematical examples and problems often require operation and interpretation skills on a reproductive or connections level. Statistics textbook problems are given in the closed-answer form. The results also show that while PISA puts strong emphasis on the statistics field, in the current Croatian curriculum this field is barely present. These discrepancies in requirements and portion of statistics activities surely affect the results of Croatian pupils on PISA assessment in the field of mathematical literacy.
  • Mapping students’ motivation in a problem oriented mathematics classroom
    111-121
    Views:
    64

    This research focuses on mapping students’ motivation by implementing problem-solving activities, namely how the problem-oriented approach affects the students’ commitment, motivation, and attitude to learning. As a practicing teacher, the author faced difficulties with motivation and sought to improve her practice in the form of action research as described in this paper. Based on the literature, the author describes sources of motivation as task interest, social environment, opportunity to discover, knowing why, using objects, and helping others. The author discusses the effect of problem-oriented teaching on the motivation of 7th-grade students. In this paper, the results of two lessons are presented.

    Subject Classification: 97C20, 97D40, 97D50, 97D60