Search

Published After
Published Before

Search Results

  • Solution of an open reality based word-problem in two secondary schools
    143-156
    Views:
    230

    This survey through an open reality based word problem is intended to assess - in two secondary schools in Komárom (Hungary) and in Komarno (Slovakia, Hungarian name: Révkomárom) in grade 10 - the ability of students to realize openness of a task. The comparison is justified by the fact that the language of teaching is Hungarian in both secondary schools, but with different curricula. This survey is related to the Content Pedagogy Research Program by the Hungarian Academy of Sciences. It is preceded by several surveys with a word problem (Pocket Money) of the third author and led by her between 2012 and 2015, and within that project in 2017 within a large sample test, among about 1500 students and university students in Hungary (?, ?) (?, ?). In our research we wanted first to assess how openly work students in two schools of the two cities mentioned in solving the same task. The answer to this question was similar to the large sample test results, so most of the students worked in a closed way, when solving this word problem. So we went on and tried to explore how students thought about their own solution given to this task, through mixed-type interviews.

    Subject Classification: 97D70, 97F90, 97D50, 97M10

  • Heuristic arguments and rigorous proofs in secondary school education
    167-184
    Views:
    119
    In this paper we are going to discuss some possible applications of the mechanical method, especially the lever principle, in order to formulate heuristic conjectures related to the volume of three-dimensional solids. In the secondary school educational processes the heuristic arguments are no less important than the rigorous mathematical proofs. Between the ancient Greek mathematicians Archimedes was the first who made heuristic conjectures with the methods of Mechanics and proved them with the rigorous rules of Mathematics, in a period, when the methods of integration were not known. For a present day mathematician (or a secondary school mathematics teacher) the tools of the definite integral calculus are available in order to calculate the volume of three dimensional bodies, such as paraboloids, ellipsoids, segments of a sphere or segments of an ellipsoid. But in the secondary school educational process, it is also interesting to make heuristic conjectures by the use of the Archimedean method. It can be understood easily, but it is beyond the normal secondary school curriculum, so we recommend it only to the most talented students or to the secondary schools with advanced mathematical teaching programme.
  • How do secondary school students from the Kurdistan Region of Iraq understand the concept of function?
    221-244
    Views:
    260

    The study investigates secondary school students' understanding of the concept of function. The paper focuses on three main aspects: students' ability to define the concept of function; students' ability to recognize different representations of function; and students' ability to convert between different representations. A test was developed to assess the three main constructs of the study and administered to 342 students in secondary schools in the Kurdistan Region of Iraq. According to the results, students have diffculties in recognizing different representations of function and conversion between them. Connections between different parts of the test may provide hints on educational challenges of how to appropriately teach functions.

    Subject Classification: 26Bxx, 97D60

  • Teaching integral transforms in secondary schools
    241-260
    Views:
    98
    Today, Hungarian students in the secondary schools do not know the idea of complex numbers, and they can not integrate except those ones who learn mathematics in advance level. Without this knowledge we can teach Fourier transform for students. Why should we teach Fourier transform (FT) or Wavelet transform (WT) for them? To teach image file formats like JPEG, (JPEG2000) we need to talk about integral transforms. For students who are good in computer programming, writing the program of 1D FT or 2D FT is a nice task. In this article we demonstrate how we can teach Fourier and Wavelet transform for students in secondary school.
  • Analysing the effects of OOP helper application
    65-75
    Views:
    95
    Nowadays students of secondary schools are familiar with the usage of computer very soon, lot of them are even capable of handling user applications very cleverly. This is satisfying for most of them. Those who imagine their future in programming or system developing, need to have deeper knowledge about object oriented programming, however, students do have it at very low level or not at all. We want to make sure whether this suppose is true, so different examinations have recently been made at Slovakian secondary schools with Hungarian teaching language. We have reached a conclusion that the students' knowledge of object oriented programming is deficient. We could achieve better results by using proper applications as a visual aid. In this paper we examine the efficiency of an application made by us.
  • Square root in secondary school
    59-72
    Views:
    209

    Although in Hungary, for decades, the calculation method of the square root of a real number is not in the mathematics curriculum, many of the taught concepts and procedures can be carried out using different square root finding methods. These provide an opportunity for students in secondary school to practice and deepen understand the compulsory curriculum. This article presents seven square-root- nding methods, currently teachable in secondary schools.

    Subject Classification: A33, A34, F53, F54

  • Analysis of a problem in plane geometry discussed in an 11th grade group study session
    181-193
    Views:
    95
    The main aim of this paper is to show those strategies and proof methods we try to teach in secondary maths education through an interesting geometric problem: Find a relation for the sides of a triangle where an angle is the double of another angle. Is the converse also true? Is it possible to generalize the problem? We try to answer these questions while discussing the upcoming difficulties in detail and presenting more possible solutions. Hopefully the paper can be successfully used in study group sessions and problem solving seminars in secondary schools.
  • Teaching probability using graph representations
    103-122
    Views:
    135
    The main objective of this paper is to present an elementary approach to classical probability theory, based on a Van Hiele type framework, using graph representation and counting techniques, highly suitable for teaching in lower and upper secondary schools. The main advantage of this approach is that it is not based on set theoretical, or combinatorial knowledge, hence it is more suitable for beginners and facilitates the transitions from level 0 to level 3. We also mention a few teaching experiences on different levels (lower secondary school, upper secondary school, teacher training, professional development, university students) based on this approach.
  • Maximum and minimum problems in secondary school education
    81-98
    Views:
    130
    The aim of this paper is to offer some possible ways of solving extreme value problems by elementary methods with which the generally available method of differential calculus can be avoided. We line up some problems which can be solved by the usage of these elementary methods in secondary school education. The importance of the extremum problems is ignored in the regular curriculum; however they are in the main stream of competition problems – therefore they are useful tools in the selection and development of talented students. The extremum problem-solving by elementary methods means the replacement of the methods of differential calculus (which are quite stereotyped) by the elementary methods collected from different fields of Mathematics, such as elementary inequalities between geometric, arithmetic and square means, the codomain of the quadratic and trigonometric functions, etc. In the first part we show some patterns that students can imitate in solving similar problems. These patterns could also provide some ideas for Hungarian teachers on how to introduce this topic in their practice. In the second part we discuss the results of a survey carried out in two secondary schools and we formulate our conclusion concerning the improvement of students' performance in solving these kind of problems.
  • Teachers and the interactive whiteboards
    281-298
    Views:
    86
    The spread of IWB (Interactive WhiteBoard) around the world changes, reforms and modernizes the traditional teaching methods. We can find these new ICT devices in more and more schools in Hungary as well and the use of it is getting widespread in everyday teaching. The teachers have the greatest role in the proper use of IWB during the lessons and they are also responsible for providing students with creative and motivating tasks lesson by lesson. In the following research, the advantages of the IWB are highlighted, the difficulties of its usage and the teachers' attitude towards the new ICT devices by asking 205 teachers from different primary and secondary schools. The results are mainly based on questionnaires.
  • Teaching polygons in the secondary school: a four country comparative study
    29-65
    Views:
    147
    This study presents the analysis of four sequences of videotaped lessons on polygons in lower secondary schools (grades 7 and 8) taught by four different teachers in four different countries (Belgium, Flanders, England, Hungary and Spain). Our study is a part of the METE project (Mathematics Educational Traditions in Europe). The aims and methodology of the project are described briefly in the introduction. In the next section of this paper we describe various perspectives on teaching and learning polygons which were derived from the literature, concerning the objectives, conceptual aspects and didactic tools of the topic. The next two sections introduce the main outcomes of our study, a quantitative analysis of the collected data and a qualitative description linked to the perspectives on teaching polygons. We conclude by discussing some principal ideas related to the theoretical and educational significance of this research work.
  • An examination of descriptive statistical knowledge of 12th-grade secondary school students - comparing and analysing their answers to closed and open questions
    63-81
    Views:
    173

    In this article, we examine the conceptual knowledge of 12th-grade students in the field of descriptive statistics (hereafter statistics), how their knowledge is aligned with the output requirements, and how they can apply their conceptual knowledge in terms of means, graphs, and dispersion indicators. What is the proportion and the result of their answers to (semi-)open questions for which they have the necessary conceptual knowledge, but which they encounter less frequently (or not at all) in the classroom and during questioning? In spring 2020, before the outbreak of the pandemic in Hungary, a traditional-classroom, “paper-based” survey was conducted with 159 graduating students and their teachers from 3 secondary schools. According to the results of the survey, the majority of students have no difficulties in solving the type of tasks included in the final exam. Solving more complex, open-ended tasks with longer texts is more challenging, despite having all the tools to solve them, based on their conceptual knowledge and comprehension skills. A valuable supplement to the analysis and interpretation of the results is the student attitudes test, also included in the questionnaire.

    Subject Classification: 97K40, 97-11, 97D60

  • The tools for developing a spatial geometric approach
    207-216
    Views:
    163

    Tamás Varga writes about the use of tools: "The rational use of tools - the colored bars, the Dienes set, the logical set, the geoboard, and some other tools - is an element of our experiment that is important for all students, but especially for disadvantaged learners." (Varga T. 1977) The range of tools that can be used well in teaching has grown significantly over the years. This paper compares spatial geometric modeling kits. Tamás Varga uses the possibilities of the Babylon building set available in Hungary in the 1970s, collects space and flat geometry problems for this (Varga T. 1973). Similarly, structured kits with significantly more options have been developed later, e.g. ZomeTool and 4D Frame. These tools are regularly used in the programs of the International Experience Workshop (http://www.elmenymuhely.-hu/?lang=en). Teachers, schools that have become familiar with the versatile possibilities of these sets, use them often in the optional and regular classes. We recorded a lesson on video where secondary students worked with the 4D Frame kit. We make some comments and offer some thoughts on this lesson.

    Subject Classification: 97G40, 97D40

  • Teaching of problem-solving strategies in mathematics in secondary schools
    139-164
    Views:
    85
    In the Hungarian mathematics education there is no explicit teaching of problem-solving strategies. The best students can abstract the strategies from the solutions of concrete problems, but for the average students it is not enough. In our article we report about a developmental research. The topic of the research was the explicit teaching of two basic strategies (forward method, backward method). Based on our experiences we state that it is possible to increase the effectivity of students' problemsolving achievement by teaching the problem-solving strategies explicitly.
  • Radio Frequency Identification from the viewpoint of students of computer science
    241-250
    Views:
    94
    This paper aims at creating the right pedagogical attitudes in term of teaching a new technology, Radio Frequency Identification (RFID) by evaluating the social acceptance of this new method. Survey of future teachers, students of teacher master studies and students from informatics oriented secondary schools were surveyed comparing their attitudes in terms of RFID to other recent technologies. Consequences of this survey are incorporated into the curriculum of the new RFID course at our institution.
  • Some Pythagorean type equations concerning arithmetic functions
    157-179
    Views:
    194

    We investigate some equations involving the number of divisors d(n); the sum of divisors σ(n); Euler's totient function ϕ(n); the number of distinct prime factors ω(n); and the number of all prime factors (counted with multiplicity) Ω(n). The first part deals with equation f(xy) + f(xz) = f(yz). In the second part, as an analogy to x2 + y2 = z2, we study equation f(x2) + f(y2) = f(z2) and its generalization to higher degrees and more terms. We use just elementary methods and basic facts about the above functions and indicate why and how to discuss this topic in group study sessions or special maths classes of secondary schools in the framework of inquiry based learning.

    Subject Classification: 97F60, 11A25

  • Teaching graph algorithms with Visage
    35-50
    Views:
    143
    Combinatorial optimization is a substantial pool for teaching authentic mathematics. Studying topics in combinatorial optimization practice different mathematical skills, and because of this have been integrated into the new Berlin curriculum for secondary schools. In addition, teachers are encouraged to use adequate teaching software. The presented software package "Visage" is a visualization tool for graph algorithms. Using the intuitive user interface of an interactive geometry system (Cinderella), graphs and networks can be drawn very easily and different textbook algorithms can be visualized on the graphs. An authoring tool for interactive worksheets and the usage of the build-in programming interface offer new ways for teaching graphs and algorithms in a classroom.
  • Demonstrating the feature of energy saving of transforms in secondary schools
    43-55
    Views:
    104
    When we are teaching the digital image formats and we are explaining the JPEG format we may get into difficulties how to explain the point and the usefulness of the discrete cosine transform (DCT) to our students. Why do we need this transform before compressing? Students probably do not know that the feature of energy saving of this transform makes the chance of good compression. In this article we show how we can demonstrate that feature of these transforms which make the chance of good compression while saving the most energy of images.
  • Die Methode von Prof. Tibor Szele im Unterricht begabter Schüler
    143-151
    Views:
    144
    Prof. Tibor Szele' has attempted to develop the mathematical problemsolving, creativity include the use of investigations and host of other devices beyond the classroom, i.e. in "mathematical circles" for talented students in secondary schools. This paper of the author – who himself has taken part in Seles1s mathematical circles – quotes from these activities according his earlier notes. This description illustrates the didactic method of Prof. T. Szele.
  • The effects of chess education on mathematical problem solving performance
    153-168
    Views:
    169
    We investigate the connection between the "queen of sciences" (mathematics) and the "royal game" (chess) with respect to the development of mathematical problem solving ability in primary school education (classes 1-8, age 7-15) where facultative chess education is present. The records of the 2014 year's entrance exam in mathematics – obligatory for the enrollment to secondary grammar schools in Hungary – are compared for the whole national database and for the results of a group containing chess-player students. The problems in the tests are classified with respect to the competencies needed to solve them. For the evaluation of the results we used standard mathematical statistical methods.
  • Dynamic geometry systems in teaching geometry
    67-80
    Views:
    91
    Computer drawing programs opened up new opportunities in the teaching of geometry: they make it possible to create a multitude of drawings quickly, accurately and with flexibly changing the input data, and thus make the discovery of geometry an easier process. The objective of this paper is to demonstrate the application possibilities of dynamic geometric systems in primary and secondary schools, as well as in distance education. A general characteristic feature of these systems is that they store the steps of the construction, and can also execute those steps after a change is made to the input data. For the demonstration of the applications, we chose the Cinderella program. We had an opportunity to test some parts of the present paper in an eighth grade primary school.
  • GeoGebra in mathematics teaching
    101-110
    Views:
    139
    GeoGebra is a dynamic mathematics software which combines dynamic geometry and computer algebra systems into an easy-to-use package. Its marvel lies in the fact that it offers both the geometrical and algebraic representation of each mathematical object (points, lines etc.). The present article gives a sample of the potential uses of GeoGebra for mathematics teaching in secondary schools.
  • Arithmetic progressions of higher order
    225-239
    Views:
    123
    The aim of this article is to clarify the role of arithmetic progressions of higher order in the set of all progressions. It is important to perceive them as the pairs of progressions closely connected by simple relations of differential or cumulative progressions, i.e. by operations denoted in the text by r and s. This duality affords in a natural way the concept of an alternating arithmetic progression that deserves further studies. All these progressions can be identified with polynomials and very special, explicitly described, recursive progressions. The results mentioned here point to a very close relationship among a series of mathematical objects and to the importance of combinatorial numbers; they are presented in a form accessible to the graduates of secondary schools.
  • Outstanding mathematicians in the 20th century: András Rapcsák (1914-1993)
    99-110
    Views:
    134
    In this paper we commemorate the life and work of András Rapcsák on the occasion of the centenary of his birth. He was an outstanding professor and a scholar teacher. He was head of the Department of Geometry (1958-1973) and the director of the Institute of Mathematics at the University of Debrecen (Hungary). He played an important role in the life of the University of Debrecen. He was the rector of this university between 1966 and 1973.
    At the beginning of his career he taught at secondary schools in several towns. He wrote mathematical schoolbooks with coauthors. He also taught at Teacher's College in Debrecen and in Eger.
    He became to interested in differential geometry under the influence of Ottó Varga. The fields of his research were line-element spaces and related areas. He was elected an Ordinary Member of the Hungarian Academy of Science in 1965. He wrote 21 papers, 8 school and textbooks and 3 articles in didactics of mathematics.
  • A computational thinking problem-thread for grade 7 students and above from the Pósa method
    101-110
    Views:
    226

    Lajos Pósa has been developing his “learning through discovery” (Győri & Juhász, 2018) method since 1988. His weekend math camps are focused on fostering problem-solving skills and high-level mathematical-thinking skills in gifted students from grades 7 to 11. One of the core aspects of the method is the structure of the problems, all problems are part of a complex, intertwined, and rich network. In this article we analyze a computational thinking problem-thread and its role in the camps’s network of problems (Gosztonyi, 2019), and show some aspects of the method. The insights gained using this method can be useful in other contexts. The possible adaptation of the method to secondary and high schools is briefly discussed as well.

    Subject Classification: 97D40

Database Logos

Keywords