Search
Search Results
-
On the legacy of G. Pólya: some new (old) aspects of mathematical problem solving and relations to teaching
169-189Views:37In this article are given some new aspects of mathematical problem solving. A framework is presented by three main resources: (1) Pólya's studies about mathematical heuristics are augmented by information drawn from a study of the history of mathematical problem solving. (2) Connections are presented between mathematical problem solving and mathematical beliefs. (3) Experience with a special program for mathematical talented students is sketched. On this background a new textbook-series has been developed and some teaching examples are taken from this context. An outlook is given on some new research on teaching of problem solving, including possible relations to modern brain research. -
On the psychology of mathematical problem solving by gifted students
289-301Views:37This paper examines the nature of mathematical problem solving from a psychological viewpoint as a sequence of mental steps. The scope is limited to solution processes for well defined problems, for instance, which occur at International Mathematical Olympiads. First the meta-mathematical background is outlined in order to present problem solving as a well defined search problem and hence as a discovery process. Solving problems is described as a sequence of elementary steps of the so called "relationship-vision" introduced here. Finally, non-procedural aspects of the psychology of problem solving are summarized, such as the role of persistence, teacher-pupil relationship, the amount of experience needed, self-confidence and inspiration at competitions. -
Bemerkungen zur Prototypentheorie – Begriffs - und Konzeptbildung
365-389Views:26Psychological theories of prototypes are put forward by mathematical modelling. Some didactical consequences are discussed on the background of this analysis. By the help of an example (classification of convex quadrangles) hints are given for didactical interpretations of actual models of cognitive psychology dealing with problems of constructing prototypes. -
Looking back on Pólya’s teaching of problem solving
207-217Views:234This article is a personal reflection on Pólya's work on problem solving, supported by a re-reading of some of his books and viewing his film Let Us Teach Guessing. Pólya's work has had lasting impact on the goals of school mathematics, especially in establishing solving problems (including non-routine problems) as a major goal and in establishing the elements of how to teach for problem solving. His work demonstrated the importance of choosing rich problems for students to explore, equipping them with some heuristic strategies and metacognitive awareness of the problem solving process, and promoting 'looking back' as a way of learning from the problem solving experience. The ideas are all still influential. What has changed most is the nature of classrooms, with the subsequent appreciation of a supporting yet challenging classroom where students work collaboratively and play an active role in classroom discussion.
Subject Classification: 97D50, 97A30
-
Process or object? Ways of solving mathematical problems using CAS
117-132Views:27Graphing and symbol manipulating calculators are now a part of mathematics education in many countries. In Norway symbol manipulating calculators have been used at various exams in upper secondary education. An important finding in mathematics education is the duality of mathematical entities – processes and objects. Building on the theoretical development by Anna Sfard and others, the students' solutions on exam problems in upper secondary education are discussed with reference to procedural and structural knowledge. -
Heuristic arguments and rigorous proofs in secondary school education
167-184Views:35In this paper we are going to discuss some possible applications of the mechanical method, especially the lever principle, in order to formulate heuristic conjectures related to the volume of three-dimensional solids. In the secondary school educational processes the heuristic arguments are no less important than the rigorous mathematical proofs. Between the ancient Greek mathematicians Archimedes was the first who made heuristic conjectures with the methods of Mechanics and proved them with the rigorous rules of Mathematics, in a period, when the methods of integration were not known. For a present day mathematician (or a secondary school mathematics teacher) the tools of the definite integral calculus are available in order to calculate the volume of three dimensional bodies, such as paraboloids, ellipsoids, segments of a sphere or segments of an ellipsoid. But in the secondary school educational process, it is also interesting to make heuristic conjectures by the use of the Archimedean method. It can be understood easily, but it is beyond the normal secondary school curriculum, so we recommend it only to the most talented students or to the secondary schools with advanced mathematical teaching programme. -
Guided Discovery in Hungarian Education Using Problem Threads: The Pósa Method in Secondary Mathematics Classrooms
51-67Views:118In Hungary, ‘guided discovery’ refers to instruction in which students learn mathematical concepts through task sequences that foster mathematical thinking. A prominent figure of guided discovery is Lajos Pósa, who developed his method to teach gifted students. Rather than teaching mathematics through thematic blocks, the Pósa Method employs webs of interconnected problem threads in which problems are built on each other, and different threads are presented simultaneously, so that students work on problems from multiple threads at the same time. It was found that this method has been successful as extracurricular training for gifted students since the 1980s; however since 2017, as part of an ongoing research, the method has been applied to mainstream curriculum in two public secondary school classrooms. The present paper examines the design and implementation processes of problem threads in this public secondary school context.
Subject Classification: 97D40
-
Some Remarks on History of Mathematical Problem Solving
51-64Views:35In this contribution, it is our goal is to look on history of mathematics as a resource for a long-term study of mathematical problem solving processes and heuristics. In this way we intend to get additional information, e. g., about heuristics which proved to be extremely successful to create new mathematics. "Changing representation" and "false position" are examples of such strategies, which are illustrated by concrete examples to demonstrate the use for classroom teaching and teacher education. Our methods are based on hermeneutic principles. -
Manipulative bulletin board for early categorization
1-12Views:28According to various researchers categorization is a developmentally appropriate mathematical concept for young children. Classifying objects also relates to every day activities of human life. The manipulative bulletin board (MBB) served as a kind of auxiliary means for approaching categorization by young children. In this article we investigated the kind of MBB that pre-service early childhood education teachers constructed in order to involve children in tasks of categorization, as well as, the way children manipulated these boards in order to categorize items. The MBB, as teaching aids, facilitated the engagement of the children in different categorization processes. -
"How to be well-connected?" An example for instructional process planning with Problem Graphs
145-155Views:101Teachers’ design capacity at work is in the focus of didactical research worldwide, and fostering this capacity is unarguably a possible turning point in the conveyance of mathematical knowledge. In Hungary, the tradition hallmarked by Tamás Varga is particularly demanding towards teachers as they are supposed to be able to plan their long-term processes very carefully. In this contribution, an extensive teaching material designed in the spirit of this tradition will be presented from the field of Geometry. For exposing its inner structure, a representational tool, the Problem Graph is introduced. The paper aims to demonstrate that this tool has potential for analyzing existing resources, helping teachers to reflect on their own preparatory and classroom work, and supporting the creation of new designs.
Subject Classification: 97D40, 97D50, 97D80, 97G10, 97U30