Search
Search Results
1 - 4 of 4 items
-
A proposal for an IOI Syllabus
193-216Views:55The International Olympiad in Informatics (IOI) is the premier competition in computing science for secondary education. The competition problems are algorithmic in nature, but the IOI Regulations do not clearly define the scope of the competition. The international olympiads in physics, chemistry, and biology do have an official syllabus, whereas the International Mathematical Olympiad has made the deliberate decision not to have an official syllabus. We argue that the benefits of having an official IOI Syllabus outweigh the disadvantages. Guided by a set of general principles we present a proposal for an IOI Syllabus, divided into four main areas: mathematics, computing science, software engineering, and computer literacy. -
Combinatorics – competition – Excel
427-435Views:31In 2001 the Informatics Points Competition of the Mathematics Journal for Secondary School Students (KÖMAL) was restarted [1]. The editors set themselves an aim to make the formerly mere programming competition a bit more varied. Therefore, every month there has been published a spreadsheet problem, a part of which was related to combinatorics. This article is intended to discuss the above mentioned problems and the solutions given to them at competitions. We will prove that traditional mathematical and programming tasks can be solved with a system developed for application purposes when applying a different way of thinking. -
Task variations for backtrack
107-120Views:77This article has been written for informatics teachers who want to issue back-track based tasks on their lessons or as homework or on competitions. We present a few methods to generate a more complicated problem from a simpler task, which will be more complex, and its solution needs a good idea or trick. Starting from an example, we lead the reader through increasingly di cult task variations.
Subject Classification: 97P50
-
Applications of methods of descriptive geometry in solving ordinary geometric problems
103-115Views:30The importance of descriptive geometry is well-known in two fields. Spatial objects can be mapped bijectively onto a plane and then we can make constructions concerning the spatial objects. The other significance of descriptive geometry is that mathematical visual perception of objects in three-dimensional space can be improved by the aid of it. The topic of this paper is an unusual application of descriptive geometry. We may come across many geometric problems in mathematical competitions, in entrance examinations and in exercise books whose solution is expected in a classical way, however, the solution can be found more easily and many times more general than it is by the standard manner. We demonstrate some of these problems to encourage to use this geometric method. Understanding the solution requires very little knowledge of descriptive geometry, however, finding a solution needs to have some idea of descriptive geometry.
1 - 4 of 4 items