Search
Search Results
-
Heuristic arguments and rigorous proofs in secondary school education
167-184Views:32In this paper we are going to discuss some possible applications of the mechanical method, especially the lever principle, in order to formulate heuristic conjectures related to the volume of three-dimensional solids. In the secondary school educational processes the heuristic arguments are no less important than the rigorous mathematical proofs. Between the ancient Greek mathematicians Archimedes was the first who made heuristic conjectures with the methods of Mechanics and proved them with the rigorous rules of Mathematics, in a period, when the methods of integration were not known. For a present day mathematician (or a secondary school mathematics teacher) the tools of the definite integral calculus are available in order to calculate the volume of three dimensional bodies, such as paraboloids, ellipsoids, segments of a sphere or segments of an ellipsoid. But in the secondary school educational process, it is also interesting to make heuristic conjectures by the use of the Archimedean method. It can be understood easily, but it is beyond the normal secondary school curriculum, so we recommend it only to the most talented students or to the secondary schools with advanced mathematical teaching programme. -
The first clear distinction between the heuristic conjecture and the deductive proof in the ancient mathematics
397-406Views:11The mathematics of the ancient river-valley cultures was purely empirical, while the classical Greek mathematics was entirely deductive without any written sign of the heuristic arguments. In the forthcoming Hellenistic period there were significant changes. One of them is that in spite of the rigorous (deductive) proofs some heuristic arguments appeared in separate treatises. We show a nice example due to Archimedes.
"We have learned from the very pioneers of this science not to have regard to mere plausible imaginings when it is a question of the reasonings to be included in our geometrical doctrine." – Proclus -
Some logical issues in discrete mathematics and algorithmic thinking
243-258Views:98The role of logic in mathematics education has been widely discussed from the seventies and eighties during the “modern maths period” till now, and remains still a rather controversial issue in the international community. Nevertheless, the relevance of discrete mathematics and algorithmic thinking for the development of heuristic and logical competences is both one of the main points of the program of Tamás Varga, and of some didactic teams in France. In this paper, we first present the semantic perspective in mathematics education and the role of logic in the Hungarian tradition. Then, we present insights on the role of research problems in the French tradition. Finely, we raise some didactical issues in algorithmic thinking at the interface of mathematics and computer science.
Subject Classification: 97E30
-
Reappraising Learning Technologies from the Viewpoint of the Learning of Mathematics
221-246Views:18Within the context of secondary and tertiary mathematics education, most so-called learning technologies, such as virtual learning environments, bear little relation to the kinds of technologies contemporary learners use in their free time. Thus they appear alien to them and unlikely to stimulate them toward informal learning. By considering learning technologies from the perspective of the learner, through the analysis of case studies and a literature review, this article asserts that the expectation of these media might have been over-romanticised. This leads to the recommendation of five attributes for mathematical learning technologies to be more relevant to contemporary learners' needs: promoting heuristic activities derived from human history; facilitating the shift from instrumentation to instrumentalisation; facilitating learners' construction of conceptual knowledge that promotes procedural knowledge; providing appropriate scaffolding and assessment; and reappraising the curriculum. -
What can we learn from Tamás Varga’s work regarding the arithmetic-algebra transition?
39-50Views:82Tamás Varga’s Complex Mathematics Education program plays an important role in Hungarian mathematics education. In this program, attention is given to the continuous “movement” between concrete and abstract levels. In the process of transition from arithmetic to algebra, the learner moves from a concrete level to a more abstract level. In our research, we aim to track the transition process from arithmetic to algebra by studying the 5-8-grader textbooks and teacher manuals edited under Tamás Varga's supervision. For this, we use the appearance of “working backward” and “use an equation” heuristic strategies in the examined textbooks and manuals, which play a central role in the mentioned process.
Subject Classification: 97-01, 97-03, 97D50
-
On an international training of mathematically talented students: assets of the 20 years of the “Nagy Károly Mathematical Student-meetings”
77-89Views:33The focus of this paper is to present the gems of the "Nagy Károly Mathematical Student-meetings" in Rév-Komárom (Slovakia) from 1991 to 2010. During these 20 years there was done a lot of work to train mathematically talented students with Hungarian mother tongue and to develop their mathematical thinking, and to teach them problem solving and heuristic strategies for successful acting on the competitions. We collected the most interesting problems and methods presented by the trainer teachers. -
Combinatorics teaching experiment
27-44Views:37Teaching combinatorics has got its conventional method. One has to see: the combinatorical formations won't be follow each other by a heuristic way. The formulas kept by pupils seem to come from "deus ex machina". We try to offer now an alternative way to approach combinatorical concepts from a nontraditional direction and point of view. -
Looking back on Pólya’s teaching of problem solving
207-217Views:229This article is a personal reflection on Pólya's work on problem solving, supported by a re-reading of some of his books and viewing his film Let Us Teach Guessing. Pólya's work has had lasting impact on the goals of school mathematics, especially in establishing solving problems (including non-routine problems) as a major goal and in establishing the elements of how to teach for problem solving. His work demonstrated the importance of choosing rich problems for students to explore, equipping them with some heuristic strategies and metacognitive awareness of the problem solving process, and promoting 'looking back' as a way of learning from the problem solving experience. The ideas are all still influential. What has changed most is the nature of classrooms, with the subsequent appreciation of a supporting yet challenging classroom where students work collaboratively and play an active role in classroom discussion.
Subject Classification: 97D50, 97A30
-
Some Remarks on History of Mathematical Problem Solving
51-64Views:33In this contribution, it is our goal is to look on history of mathematics as a resource for a long-term study of mathematical problem solving processes and heuristics. In this way we intend to get additional information, e. g., about heuristics which proved to be extremely successful to create new mathematics. "Changing representation" and "false position" are examples of such strategies, which are illustrated by concrete examples to demonstrate the use for classroom teaching and teacher education. Our methods are based on hermeneutic principles.