Search

Published After
Published Before

Search Results

  • Using the computer to visualise graph-oriented problems
    15-32
    Views:
    32
    The computer, if used more effectively, could bring advances that would improve mathematical education dramatically, not least with its ability to calculate quickly and display moving graphics. There is a gap between research results of the enthusiastic innovators in the field of information technology and the current weak integration of the use of computers into mathematics teaching.
    This paper examines what exactly the real potentials of using some mathematics computer software are to support mathematics teaching and learning in graph-oriented problems, more specifically we try to estimate the value added impact of computer use in the mathematics learning process.
    While electronic computation has been used by mathematicians for five decades, it has been in the hands of teachers and learners for at most three decades but the real breakthrough of decentralised and personalised micro-computer-based computing has been widely available for less than two decades. And it is the latter facility that has brought the greatest promise for computers in mathematics education. That computational aids overall do a better job of holding students' mathematical interest and challenging them to use their intellectual power to mathematical achievement than do traditional static media is unquestionable. The real question needing investigation concerns the circumstances where each is appropriate.
    A case study enabled a specification of advantages and obstacles of using computers in graph-oriented questions. Individual students' interviews revealed two less able students' reactions, difficulties and misinterpretations while using computers in mathematics learning.
    Among research outcomes is that the mathematical achievement of the two students observed improved and this makes teaching with computers an overriding priority for each defined teaching method.
    This paper may not have been realised without the valuable help of the Hungarian Eötvös State Grant.
  • An e-learning environment for elementary analysis: combining computer algebra, graphics and automated reasoning
    13-34
    Views:
    34
    CreaComp is a project at the University of Linz, which aims at producing computer-supported interactive learning units for several mathematical topics at introductory university level. The units are available as Mathematica notebooks. For student experimentation we provide computational, graphical and reasoning tools as well. This paper focuses on the elementary analysis units.
    The computational and graphical tools of the CreaComp learning environment facilitate the exploration of new mathematical objects and their properties (e.g., boundedness, continuity, limits of real valued functions). Using the provided tools students should be able to collect empirical data systematically and come up with conjectures. A CreaComp component allows the formulation of precise conjectures and the investigatation of their validity. The Theorema system, which has been integrated into the CreaComp learning environment, provides full predicate logic with a user-friendly twodimensional syntax and a couple of automated reasoners that produce proofs in an easy-to-read and natural presentation. We demonstrate the learning situations and the provided tools through several examples.
  • Nice tiling, nice geometry!?!
    269-280
    Views:
    38
    The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
    It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
    I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
    My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
    A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
    Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
    This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference.
  • Application of a color education software to improve color aptitude
    267-285
    Views:
    13
    The ability to handle colors smoothly and consciously may be vital to professionals in various fields, including engineers specializing in architecture or design. Education in sciences related to colors and a developed color aptitude are essential. In our experience, many secondary school graduates in Hungary exhibit inadequate competence and need to be trained in both fields by college instructors, thereby laying the foundations for their future professional work. In our paper, we introduce a computer-based method to teach color theory using a self-developed interactive educational software. We also demonstrate the results of a test measuring the efficiency of the software. Our method was shown to be capable of familiarizing students with the basic fields of visual computing, e.g. graphics and image processing.