Articles

Potential for using ai in the development of sustainable supply chains

Published:
2025-07-31
Authors
View
Keywords
License

Copyright (c) 2025 Sarkadi Barnabás, Buglyó-Nyakas Erzsébet, Tímea Gál

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Sarkadi, B., Buglyó-Nyakas, E., & Gál, T. (2025). Potential for using ai in the development of sustainable supply chains. Economica, 16(1-2), 90-106. https://doi.org/10.47282/economica/2025/16/1-2/15688
Abstract

Logistics processes have an increasingly significant environmental impact, which is partly caused by a lack of knowledge or priority for green logistics. Emissions from transport, energy consumption related to production, storage and material handling, as well as packaging waste are all serious burdens. At the same time, environmentally friendly solutions can improve the image of companies. The goal of a green supply chain is not only to deliver products to the consumer, but also to reduce environmental impact while maintaining efficiency and reliability. Sustainability strategies such as reducing the carbon footprint or increasing energy efficiency are crucial. The topic was examined by systematic literature analysis based on the Web of Science database (2014–2024), using the PRISMA methodology. According to the results, from 2021 onwards, digital technologies (e.g. blockchain, Industry 4.0, artificial intelligence) have come to the fore, which will determine the future of green logistics and further research directions.

References
  1. [1] Adams, R., Jeanrenaud, S., Bessant, J., Denyer, D., & Overy, P. (2016). Sustainability-oriented innovation: A systematic review. International Journal of Management Reviews, 18(2), 180–205. https://doi.org/10.1111/ijmr.12068
  2. [2] Althabatah, A., Yaqot, M., Menezes, B., & Kerbache, L. (2023). Transformative procurement trends: Integrating Industry 4.0 technologies for enhanced procurement processes. Logistics, 7(3), 63. https://doi.org/10.3390/logistics7030063
  3. [3] Beamon, B. M. (1999). Designing the green supply chain. Logistics Information Management, 12(4), 332–342.
  4. [4] Bongomin, O., Yemane, A., Kembabazi, B., Malanda, C., Mwape, M. C., Mpofu, N. S., & Tigalana, D. (2020). Industry 4.0 disruption and its neologisms in major industrial sectors: A state of the art. Journal of Engineering, 2020, 8090521. https://doi.org/10.1155/2020/8090521
  5. [5] Clarivate Analytics. (2019). Web of Science databases. https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/
  6. [6] Eck, N. J., Waltman, L., Dekker, R., & van den Berg, J. (2010). A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405–2416.
  7. [7] European Commission. (2020). A new Circular Economy Action Plan for a cleaner and more competitive Europe. https://edz.bib.uni-mannheim.de/edz/doku/wsa/2020/ces-2020-1189-en.pdf
  8. [8] Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114. https://doi.org/10.1016/j.ijpe.2015.01.003
  9. [9] Garfield, E. (1964). Science Citation Index—A new dimension in indexing science. Science, 144(3619), 649–654.
  10. [10] Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252, 119869. https://doi.org/10.1016/j.jclepro.2019.119869
  11. [11] Govindan, K., Rajendran, S., Sarkis, J., & Murugesan, P. (2015). Multi criteria decision making approaches for green supplier evaluation and selection: A literature review. Journal of Cleaner Production, 98, 66–83. https://doi.org/10.1016/j.jclepro.2013.06.046
  12. [12] Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603–626. https://doi.org/10.1016/j.ejor.2014.07.012
  13. [13] Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408–425. https://doi.org/10.1016/j.psep.2018.05.009
  14. [14] Khan, H. U., Malik, M. Z., & Khan, S. (2022). Systematic analysis of risk associated with supply chain operations using blockchain technology. Wireless Communications and Mobile Computing, 2022, 8725767. https://doi.org/10.1155/2022/8725767
  15. [15] Klewitz, J., & Hansen, E. G. (2014). Sustainability-oriented innovation of SMEs: A systematic review. Journal of Cleaner Production, 65, 57–75. https://doi.org/10.1016/j.jclepro.2013.07.017
  16. [16] Labaran, M. J., & Masood, T. (2023). Industry 4.0 driven green supply chain management in renewable energy sector: A critical systematic literature review. Energies, 16(19), 6977. https://doi.org/10.3390/en16196977
  17. [17] Naganuma, S. (2017). Communication and public engagement: An assessment of civic scientific literacy in Japan.
  18. [18] Osuna-Velarde, D. V., Salazar-Echeagaray, J. E., Bueno-Fernández, M. M., Rosado-Castellanos, D. U., Cañarte-Vélez, C. R., Baque-Cantos, M. A., Baque-Parrales, E. M., Granados-Aya, F. A., Cano-Vargas, A. A., Cedeño-Ramírez, J. D., Lemos-Tamayo, J., & Rincón-Guio, C. (2024). The confluence of Logistics 4.0 and agribusiness: A systematic review and future directions. Journal of Infrastructure, Policy and Development, 8(2), 1–30. https://doi.org/10.24294/jipd.v8i2.2871
  19. [19] Oztemel, E., & Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 31(1), 127–182. https://doi.org/10.1007/s10845-018-1433-8
  20. [20] Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71.
  21. [21] Patalas-Maliszewska, J., & Łosyk, H. (2024). Changes in sustainable development in manufacturing in cases of unexpected occurrences—A systematic review. Sustainability, 16(2), 717. https://doi.org/10.3390/su16020717
  22. [22] Remondino, M., & Zanin, A. (2022). Logistics and agri-food: Digitization to increase competitive advantage and sustainability. Literature review and the case of Italy. Sustainability, 14(2), 787. https://doi.org/10.3390/su14020787
  23. [23] Rojek, I., Jasiulewicz-Kaczmarek, M., Piszcz, A., Galas, K., & Mikołajewski, D. (2024). Review of the 6G-based supply chain management within Industry 4.0/5.0 paradigm. Electronics, 13(13), 2624. https://doi.org/10.3390/electronics13132624
  24. [24] Rusch, M., Schöggl, J.-P., & Baumgartner, R. J. (2023). Application of digital technologies for sustainable product management in a circular economy: A review. Business Strategy and the Environment, 32(3), 1159–1174. https://doi.org/10.1002/bse.3099
  25. [25] Santhi, A. R., & Muthuswamy, P. (2022). Pandemic, war, natural calamities, and sustainability: Industry 4.0 technologies to overcome traditional and contemporary supply chain challenges. Logistics, 6(4), 81. https://doi.org/10.3390/logistics6040081
  26. [26] Sarkis, J., & Dou, Y. (2017). Green supply chain management: A concise introduction. Routledge.
  27. [27] Schnell, J. D. (2018). Web of Science: The first citation index for data analytics and scientometrics. In F. J. Cantú-Ortiz (Ed.), Research analytics: Boosting university productivity and competitiveness through scientometrics (pp. 15–29). Taylor & Francis.
  28. [28] Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699–1710.
  29. [29] Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9(1), 53–80.
  30. [30] Tavana, M., Shaabani, A., Raeesi Vanani, I., & Gangadhari, R. K. (2022). A review of digital transformation on supply chain process management using text mining. Processes, 10(5), 842. https://doi.org/10.3390/pr10050842
  31. [31] Varriale, V., Cammarano, A., Michelino, F., & Caputo, M. (2023). Industry 5.0 and triple bottom line approach in supply chain management: The state-of-the-art. Sustainability, 15(7), 5712. https://doi.org/10.3390/su15075712
  32. [32] Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014
  33. [33] Wang, Y., Yang, Y., Qin, Z., Yang, Y., & Li, J. (2023). A literature review on the application of digital technology in achieving green supply chain management. Sustainability, 15(11), 8564. https://doi.org/10.3390/su15118564
  34. [34] Yıldız S. Y. – Tosun N. (2021): Sosyal Pazarlama Literatüründe Sağlık Hizmetlerinin Gelişimi. Uluslararası Sağlık Yönetimi ve Stratejileri Araştırma Dergisi. 7. évf. 3. sz. pp. 713–725.
  35. [35] Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of Industry 4.0: A review. Engineering, 3(5), 616–630. https://doi.org/10.1016/J.ENG.2017.05.015
  36. [36] Zrelli, I., & Rejeb, A. (2024). A bibliometric analysis of IoT applications in logistics and supply chain management. Heliyon, 10(16), e36578. https://doi.org/10.1016/j.heliyon.2024.e36578