Folyóiratcikk

A mesterséges intelligencia alkalmazásának lehetőségei a fenntartható ellátási láncok fejlesztésében

Megjelent:
2025-07-31
Szerzők
Megtekintés
Kulcsszavak
Licenc

Copyright (c) 2025 Sarkadi Barnabás, Buglyó-Nyakas Erzsébet, Tímea Gál

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Hogyan hivatkozzuk
Kiválasztott formátum: APA
Sarkadi, B., Buglyó-Nyakas, E., & Gál, T. (2025). A mesterséges intelligencia alkalmazásának lehetőségei a fenntartható ellátási láncok fejlesztésében. Economica, 16(1-2), 90-106. https://doi.org/10.47282/economica/2025/16/1-2/15688
Absztrakt

A logisztikai folyamatok egyre jelentősebb környezeti hatással járnak, amit részben a zöld logisztika ismeretének vagy prioritásának hiánya okozhat. A szállításból eredő kibocsátások, a termeléshez, raktározáshoz és anyagmozgatáshoz kapcsolódó energiafelhasználás, valamint a csomagolási hulladék mind komoly terhelést jelentenek. Ugyanakkor a környezetbarát megoldások javíthatják a vállalatok megítélését. A zöld ellátási lánc célja nemcsak a termékek eljuttatása a fogyasztóhoz, hanem a környezeti hatások csökkentése is, a hatékonyság és megbízhatóság fenntartása mellett. Az olyan fenntarthatósági stratégiák, mint a szénlábnyom mérséklése vagy az energiahatékonyság növelése, kulcsfontosságúak. A téma vizsgálatát szisztematikus irodalomelemzéssel végeztük a Web of Science adatbázis alapján (2014–2024), a PRISMA-módszertan alkalmazásával. Az eredmények szerint 2021-től előtérbe kerültek a digitális technológiák (pl. blockchain, Industry 4.0, mesterséges intelligencia), amelyek meghatározzák a zöld logisztika jövőjét és a további kutatási irányokat.

 

Hivatkozások
  1. [1] Adams, R., Jeanrenaud, S., Bessant, J., Denyer, D., & Overy, P. (2016). Sustainability-oriented innovation: A systematic review. International Journal of Management Reviews, 18(2), 180–205. https://doi.org/10.1111/ijmr.12068
  2. [2] Althabatah, A., Yaqot, M., Menezes, B., & Kerbache, L. (2023). Transformative procurement trends: Integrating Industry 4.0 technologies for enhanced procurement processes. Logistics, 7(3), 63. https://doi.org/10.3390/logistics7030063
  3. [3] Beamon, B. M. (1999). Designing the green supply chain. Logistics Information Management, 12(4), 332–342.
  4. [4] Bongomin, O., Yemane, A., Kembabazi, B., Malanda, C., Mwape, M. C., Mpofu, N. S., & Tigalana, D. (2020). Industry 4.0 disruption and its neologisms in major industrial sectors: A state of the art. Journal of Engineering, 2020, 8090521. https://doi.org/10.1155/2020/8090521
  5. [5] Clarivate Analytics. (2019). Web of Science databases. https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/
  6. [6] Eck, N. J., Waltman, L., Dekker, R., & van den Berg, J. (2010). A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405–2416.
  7. [7] European Commission. (2020). A new Circular Economy Action Plan for a cleaner and more competitive Europe. https://edz.bib.uni-mannheim.de/edz/doku/wsa/2020/ces-2020-1189-en.pdf
  8. [8] Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114. https://doi.org/10.1016/j.ijpe.2015.01.003
  9. [9] Garfield, E. (1964). Science Citation Index—A new dimension in indexing science. Science, 144(3619), 649–654.
  10. [10] Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252, 119869. https://doi.org/10.1016/j.jclepro.2019.119869
  11. [11] Govindan, K., Rajendran, S., Sarkis, J., & Murugesan, P. (2015). Multi criteria decision making approaches for green supplier evaluation and selection: A literature review. Journal of Cleaner Production, 98, 66–83. https://doi.org/10.1016/j.jclepro.2013.06.046
  12. [12] Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603–626. https://doi.org/10.1016/j.ejor.2014.07.012
  13. [13] Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408–425. https://doi.org/10.1016/j.psep.2018.05.009
  14. [14] Khan, H. U., Malik, M. Z., & Khan, S. (2022). Systematic analysis of risk associated with supply chain operations using blockchain technology. Wireless Communications and Mobile Computing, 2022, 8725767. https://doi.org/10.1155/2022/8725767
  15. [15] Klewitz, J., & Hansen, E. G. (2014). Sustainability-oriented innovation of SMEs: A systematic review. Journal of Cleaner Production, 65, 57–75. https://doi.org/10.1016/j.jclepro.2013.07.017
  16. [16] Labaran, M. J., & Masood, T. (2023). Industry 4.0 driven green supply chain management in renewable energy sector: A critical systematic literature review. Energies, 16(19), 6977. https://doi.org/10.3390/en16196977
  17. [17] Naganuma, S. (2017). Communication and public engagement: An assessment of civic scientific literacy in Japan.
  18. [18] Osuna-Velarde, D. V., Salazar-Echeagaray, J. E., Bueno-Fernández, M. M., Rosado-Castellanos, D. U., Cañarte-Vélez, C. R., Baque-Cantos, M. A., Baque-Parrales, E. M., Granados-Aya, F. A., Cano-Vargas, A. A., Cedeño-Ramírez, J. D., Lemos-Tamayo, J., & Rincón-Guio, C. (2024). The confluence of Logistics 4.0 and agribusiness: A systematic review and future directions. Journal of Infrastructure, Policy and Development, 8(2), 1–30. https://doi.org/10.24294/jipd.v8i2.2871
  19. [19] Oztemel, E., & Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 31(1), 127–182. https://doi.org/10.1007/s10845-018-1433-8
  20. [20] Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71.
  21. [21] Patalas-Maliszewska, J., & Łosyk, H. (2024). Changes in sustainable development in manufacturing in cases of unexpected occurrences—A systematic review. Sustainability, 16(2), 717. https://doi.org/10.3390/su16020717
  22. [22] Remondino, M., & Zanin, A. (2022). Logistics and agri-food: Digitization to increase competitive advantage and sustainability. Literature review and the case of Italy. Sustainability, 14(2), 787. https://doi.org/10.3390/su14020787
  23. [23] Rojek, I., Jasiulewicz-Kaczmarek, M., Piszcz, A., Galas, K., & Mikołajewski, D. (2024). Review of the 6G-based supply chain management within Industry 4.0/5.0 paradigm. Electronics, 13(13), 2624. https://doi.org/10.3390/electronics13132624
  24. [24] Rusch, M., Schöggl, J.-P., & Baumgartner, R. J. (2023). Application of digital technologies for sustainable product management in a circular economy: A review. Business Strategy and the Environment, 32(3), 1159–1174. https://doi.org/10.1002/bse.3099
  25. [25] Santhi, A. R., & Muthuswamy, P. (2022). Pandemic, war, natural calamities, and sustainability: Industry 4.0 technologies to overcome traditional and contemporary supply chain challenges. Logistics, 6(4), 81. https://doi.org/10.3390/logistics6040081
  26. [26] Sarkis, J., & Dou, Y. (2017). Green supply chain management: A concise introduction. Routledge.
  27. [27] Schnell, J. D. (2018). Web of Science: The first citation index for data analytics and scientometrics. In F. J. Cantú-Ortiz (Ed.), Research analytics: Boosting university productivity and competitiveness through scientometrics (pp. 15–29). Taylor & Francis.
  28. [28] Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699–1710.
  29. [29] Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9(1), 53–80.
  30. [30] Tavana, M., Shaabani, A., Raeesi Vanani, I., & Gangadhari, R. K. (2022). A review of digital transformation on supply chain process management using text mining. Processes, 10(5), 842. https://doi.org/10.3390/pr10050842
  31. [31] Varriale, V., Cammarano, A., Michelino, F., & Caputo, M. (2023). Industry 5.0 and triple bottom line approach in supply chain management: The state-of-the-art. Sustainability, 15(7), 5712. https://doi.org/10.3390/su15075712
  32. [32] Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014
  33. [33] Wang, Y., Yang, Y., Qin, Z., Yang, Y., & Li, J. (2023). A literature review on the application of digital technology in achieving green supply chain management. Sustainability, 15(11), 8564. https://doi.org/10.3390/su15118564
  34. [34] Yıldız S. Y. – Tosun N. (2021): Sosyal Pazarlama Literatüründe Sağlık Hizmetlerinin Gelişimi. Uluslararası Sağlık Yönetimi ve Stratejileri Araştırma Dergisi. 7. évf. 3. sz. pp. 713–725.
  35. [35] Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of Industry 4.0: A review. Engineering, 3(5), 616–630. https://doi.org/10.1016/J.ENG.2017.05.015
  36. [36] Zrelli, I., & Rejeb, A. (2024). A bibliometric analysis of IoT applications in logistics and supply chain management. Heliyon, 10(16), e36578. https://doi.org/10.1016/j.heliyon.2024.e36578