Search

Published After
Published Before

Search Results

  • Soil moisture sensors for sustainable water management in field crop production: A review of advances and application challenges
    41-54
    Views:
    6

    Efficient water management is essential for sustainable production of field crops amid climate change, population growth, and water scarcity. Traditional irrigation practices often lead to water use inefficiency, which harms soil health and reduces yields. To address this, reviewing previous studies on soil moisture sensors provides important context and guidance. Literature from Scopus, Google Scholar, and WoS (2019–2025) on soil moisture sensors for sustainable water management in field crops was screened. Out of 244 retrieved publications, 79 met the inclusion criteria with a focus on sensor technologies, applications, advances, and challenges, analysed thematically for research gaps and insights. Based on the findings, soil moisture sensors boost water management, improve yields of field crops, and support sustainable agriculture. However, hindrances related to high costs, lack of awareness, technical complexity, calibration needs, energy challenges, data interpretation difficulties, and compatibility problems hinder effective soil moisture sensor results. Integrating soil moisture sensors with decision-support tools optimises water use and protects soil health to promote long-term productivity under climate variability. Future research should strategise on the development of low-cost, reliable soil moisture sensors with technology subsidies, training, policy support, durability, integration, and simple data to empower farmers to adopt precision water management.

  • The effect of season and fertilizer on the LAI, the photosynthesis and the yield of the maize hybrids with different genetic characteristics
    27-34
    Views:
    254

    The experiment was carried out in Debrecen, at the Experimental Station of the University of Debrecen Centre of Agricultural Sciences, Department of Crop Production and Applied Ecology. We tested 10 various hybrids with their own genetic characteristics for five different fertilizer doses, in addition to the parcels without fertilization. The three factors of production technology jointly determine the successfully of maize production, but in different measure. The yield and the stability of yield of maize can be increased with hybrid-specific technologies.
    In 2004-2005 experiment years the favorable results reached were due to the rainy season. There were significant difference between the productivity of maize hybrids. The N 40, P2O5 25, K2O 30 kg/ha treatment caused the highest increase of yield (3-5 t/ha) compared to the control (parcels without fertilization). The reaction of hybrids to the further fertilizer doses was different. The agro-ecological optimum of NPK fertilization was N 120, P 75, K 90 kg of the most hybrids.
    During the experiment, we tested the moisture loss of the five hybrids. The seed moisture content at harvest was higher than in previous years due to the rainy seasons. The seed moisture content of harvest of FAO 200-300 hybrids were about 20%. It changed between 21-24% in the case of hybrids with longer vegetation period (FAO 400), the seed moisture content of Mv Vilma (FAO 510) was 24.21-25.04% in the average of fertilizer treatments. There is an important difference between the moisture loss ability of hybrids which changed 0.2-0.6%/day. The moisture loss of hybrids changed depending on the fertilizer treatment; usually, it was more favorable in the optimal fertilizer dose (N120+PK).
    In the case of tested hybrids, we measured the highest LAI and photosynthetic activity at the optimal treatment, N 120, P2O5 75, K2O 90 kg/ha in the respect of efficiency and environmental protection, and the yield was high also for this treatment. There are significant difference between the LAI, the photosynthetic activity and the yield of hybrids, and these values could change depending on the treatment of fertilization.

  • Assessment of Environmental Susceptibility/Vulnerability of Soils
    62-74
    Views:
    193

    Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
    The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
    Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
    Soil resources are threatened by the following environmental stresses:
    – soil degradation processes;
    – extreme moisture regime;
    – nutrient stresses (deficiency or toxicity);
    – environmental pollution.
    Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
    The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
    The efficient control of these processes necessitates the following consecutive steps:
    • registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
    • evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
    • assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
    • elaboration of efficient technologies for the „best” control alternatives (best management practice).
    Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
    Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
    The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

  • Evaluation of the role of common vetch (Vicia sativa L.) green manure in crop rotations
    161-171
    Views:
    373

    Common vetch (Vicia sativa L.) is an annual legume, grown as green manure provide rapid soil cover, can increase soil moisture and organic matter content and reduce soil erosion during fall. During the fallow period, legumes grown as catch crops are known by releasing large amounts of mineral nitrogen (N) for the subsequent crop. By taking advantage of these benefits, it is possible to increase the yield of the next crop in an environmentally friendly and sustainable way. The goal of this study was to determine the value of common vetch as a green manure, considering its effect on soil conditions and the yield of next crops. We examined three different common vetch seed rate as a green manure in a crop rotation with triticale, oat and corn. Next to the green manured treatments, we used fertilized and bare fallow control treatment for comparison. In our study we evaluated the aboveground biomass weight of spring vetch green manure and its effect on the moisture content of the soil. We examined the green manure’s effect on the next crops plant height and yield. We found that the moisture content of the green manured plots was significantly higher during summer drought. On the green manured plots, 37.9% higher triticale yield, 50% higher oat yield and 44% higher corn yield were measured compared to the control plots. The insertion of spring vetch green manuring into crop rotations could be a good alternative to sustainable nutrient replenishment methods. It can be used to reduce the input needs of farming, reduce carbon footprint, contribute to the protection of soils and increase the organic matter content of the soil.

  • The Effect of Soil Coverings on Soil Respiration in Sandy Soil
    21-25
    Views:
    205

    The purpose of our experiments is to study effect of different soil coverings (porous black polyethylene called agroszövet and black polyethylene) on CO2 production in sandy soil. The CO2 production was measured in our laboratory according to Witkamp (1966 cit. Szegi, 1979), after 5 days’ incubation period. Samples were taken off four times (March, May, July, September) in every year of the experiment. In May, July and September of 2000, the CO2 production was significantly higher in the control than in the treatment soil. With the exception of September, the value of CO2 production was significantly higher under black polyethylene than under agroszövet. In March and May of 2001, the soil under black polyethylene, and in July and September the control soil produced the greatest quantity of CO2. With the exception of July, significantly more CO2 was produced under black polyethylene than under agroszövet. To study the dynamic of CO2 production there was find a significantly higher value May and September of 2001 than 2000. Similarly significant higher CO2 production was detected in September than in the other months In average of two experimental years the difference between the produced CO2 under different coverings was occasionally. Explicit upward tendency in soil CO2 production was detected only in case of control soil. There was a medium (r=0,413) relationship observed between the moisture content and the CO2 producing ability of soil. To sum up the soil coverings had favourable effect on soil CO2 production very rearly, but they could help to conserve the moisture content of soil.

  • The Effect of Soil Coverings on Cellulose Decomposition Activity of Sandy Soil
    15-20
    Views:
    151

    The purpose of our experiments is to discover the effect of different soil cover matter (agroszövet and black polyethylene) on actual (under field circumstances) and potential (under laboratory circumstances) cellulose decomposition activity. In our field research, the Unger-test was used, and in laboratory research, the Petkov-Markova method was applied. In the first year of the experiment (2000) actual cellulose decomposition activity was significantly higher in covered than in the uncovered soil both in spring and autumn. The difference between the two treatments was significant only in spring. In the spring of 2001 black polyethylene showed significantly the lowest, activity, while in autumn the agroszövet (a porous black polyethylene) showed significantly the highest activity. In the autumn of 2001 the soil covered by black polyethylene gave non-significant,and the soil covered by agroszövet gave a significant higher activity value than the control. Averaging the two experimental years (2000-2001), the actual cellulose decomposition activity was significantly higher in covered soils both in spring (with 30-39%) and in autumn (with 34-69%). Moreover, in autumn a significantly higher value was detected under agroszövet than in any other treatment. The difference between the effect of treatments was not significant. In 2000, the potential cellulose decomposition activity was the highest in soil covered by agroszövet in spring, but in autumn higher activity value was detected in every covered soil than in the control. In the spring of 2001, every covered soil showed a lower, but in autumn a higher, potential cellulose decomposition rate than the control. The activity decreased significantly 27 (agroszövet) and 45 (black polyethylene) percent in spring, and increased no- significantly 8 (agroszövet) and 4 (black polyethylene) percent in autumn. During the two experimental years, we observed on average lower potential cellulose decomposition activity (15-60%) in spring and a higher one (14-43%) in autumn. Neither was significant. The dynamic of potential cellulose decomposition activity averaging 2000 and 2001 showed a slight, the actual cellulose decomposition activity an explicit non-significant upward tendency. There was a strong (r=0,189) correlation obtained between the actual and potential cellulose decomposition activity of soil, and a medium-strong (r=0,673) relationship between the soil moisture content and actual cellulose decomposition activity.

  • Effect of NPK fertilization on the yield and yield stability of different maize genotypes
    101-104
    Views:
    310

    The yielding capacity and quality parameters of 11 maize hybrids were studied in 2011 on calcareous chernozem soil in a 25-year long-term fertilization experiment in the control (without fertilization), in the base treatment of N 40 kg ha-1, P2O5 25 kg ha-1, K2O 30 kg ha-1 and in five treatments which were the multiplied doses of the base treatment. The N fertilizer was applied in the autumn and in the spring, while P and K fertilizers were applied in the autumn.The sowing time was 17–18 April, the time of harvest was 8 October. The 30-year average of precipitation (April–Sept) was 345.1 mm, the amount of precipitation did not differ greatly from that, however, its distribution was very unfavourable.
    It was found that the largest yield increment (as compared to the control) was in the treatment N 40 kg ha-1, P2O5 25 kg ha-1, K2O 30 kg ha-1 in the long-term experiment. The largest yields were obtained for the hybrids P9494, PR37N01 and PR35F38 (13.64–13.71 t ha-1). Due to the dry period at the end of the summer – beginning of autumn, the grain moisture content at harvest was favourably low, 12–18% depending on the treatment and the growing season.

    The N fertilization significantly increased the protein content of the kernel, but the starch content of the kernel decreased (significantly in several cases) with increasing fertilizer doses and yields as compared with the control.
    The highest protein content was measured in hybrids GK Boglár and Szegedi 386. The oil content was above 4% for GK Boglár, but the two hybrids were not among the best yielding hybrids in spite of their good inner content. The starch content was around 75 % without fertilization, it decreased with fertilization.
    For the tested hybrids, the fertilizer dose N 120 kg ha-1, P2O5 75 kg ha-1, K2O 90 kg ha-1 can be recommended with respect to efficacy and environmental considerations.

  • Effect of Soil Covering on the Soil Enzyme Activity of Integrated Orchard
    20-29
    Views:
    171

    The purpose of our experiments is to discover the effect of different soil cover matters (agrofoil and black polyethylene) on the activity of some enzymes (phosphatase, saccharase, urease, catalase, dehydrogenase) occuring in soil. Soil samples were taken from a cider apple plantation of the Fruit Producing Research and Advisory Kht Újfehértó. The enzyme activity was measured according to Krámer and Erdei (1959a), Kuprevič and Tsherbakova (1956), Kuprevič et al. (1966), Frankenberger and Johanson (1983), Mersi and Schinner (1991). Soil moisture content was by conventional (drying chamber) method measured during every sampling and enzyme activity was transpolated to absolute dry soil. Results were estimated by mathematical methods (variation analysis, correlation counting). Soil samples were taken by trials 5 times (in every two months) a year in the vegetation period from March to November.
    By recording the monthly changes of the enzyme activity we have observed the following. The activity of the phosphatase was generally the highest in May and the lowest in November. Depending on the trials, high values were also measured in March and September. The activity of the saccharase was generally the highest in November and the lowest in June, but at the same time peaks even occured in May and September. The highest urease avtivity was measured in September and November, and the lowest activity in May and July, also depending on the trials. In the year 2000, after a deep point in March, the activity of the catalase was the highest in November or by certain trials in September. In 2001, the lowest activity was also measured in March, but the highest activity appeared in November in case of one-minute trial, and in May in consequence of two-minute trial. Finally the activity of dehydrogenase was the highest in November and the lowest in July apart from the model years.
    There were essential differences in rainfall of the two experimental years which was reflected in the enzyme activities. There was a poor positive significant relationship between soil moisture content and enzyme activity values in case of phosphatase, saccharase, urease (r=0,426; 0,480; 0,396) respectively. In case of catalase1 (r=0,518), catalase (r=0,556), dehydrogenase (r=0,559) we obtained a medium strong positive relationship between soil moisture content and enzyme activity values. By evaluating the effect of different trials in case of every examined enzyme significantly higher values were detected in soils covered by agrofoil (a porous black polyethylene) than in soils covered by black polyethylene or in uncovered soils. Moreover, the soil covered by black polyethylene showed significantly higher enzyme activities (besides phosphatase) than the control soil. Thus soil-covering meant statistically significant advantages in enzyme activity as opposed to uncovered soil proved.

  • Application of AquaCrop in processing tomato growing and calculation of irrigation water
    183-187
    Views:
    468

    The area and volume of processing tomato production is increasing in Hungary. Irrigation is crucial for processing tomato growing. To save water and energy, it is important to know exactly how much water is needed to reach the desirable quality and quantity. AquaCrop is a complex software, developed by FAO, which is able to calculate irrigation water needs, several stress factors and to predict yields. A field experiment was conducted in Szarvas in processing tomato stands, under different irrigation treatments. These were the following: fully irrigated plot with 100% of evapotranspiration (ET) (calculated by AquaCrop), deficit irrigated plot with 50% of ET (D) and control (K) plot with basic water supply was also examined. Dry yield, crop water stress index and soil moisture were compared to modelled data. The yields in the plots with different access to water were not outstanding in the experiment. The model overestimated the yields in every case, but the actual and modelled yields showed good correlation. AquaCrop detected stomatal closure percentages only in the unirrigated plot. These values were compared to CWSI – computed from leaf surface temperature data, collected by a thermal cam in July – and showed moderately strong correlation. This result suggests that Aquacrop simulates water stress not precisely and it is only applicable in the case of water scarcity. Soil moisture data of the three plots were only compared by means. The measured and modeled data did not differ in the case of K and ET plots, but difference appeared in the D plot. The obtained results suggest that the use of AquaCrop for monitoring soil moisture and water stress has its limits when we apply the examined variables. In the case of dry yield prediction overestimation needs to be considered.

  • Effect of tillage practices, fertilizer treatments and crop rotation on yield of maize (Zea mays L.) hybrids
    43-48
    Views:
    395

    This research was conducted at the University of Debrecen Látókép Research Station and is part of an ongoing long-term polyfactorial experiment. The impact of three tillage systems (Mouldboard plowing-MT, Strip tillage-ST, Ripper tillage-RT) and two levels of fertilizer treatments (N80 kg ha-1, N160 kg ha-1) along with a control (N0 kg ha-1) on the yield of maize hybrids (Armagnac- FAO 490 & Loupiac-FAO 380) cultivated in rotation with winter wheat was evaluated during a two-year period (2017–2018).

    Amongst the three tillage treatments evaluated, ripper tillage (RT) had the highest average yield (10.14 t ha-1) followed by mouldboard tillage (MT) and strip tillage (ST) with 9.84 and 9.21 t ha-1 respectively. Yield difference between RT and MT was not significant (P>0.05), as compared to ST (P<0.05). Soil moisture content varied significantly with tillage practices and was highest in ST, followed by RT and MT (ST>RT>MT). Yield of RT was 7–9% higher than MT in monoculture plots, while MT reign superior in biculture plots (monoculture: RT>MT>ST; biculture: MT>RT>ST).

    A positive interaction between tillage and fertilization was observed, with higher yield variation (CV=40.70) in the non-fertilized (N0) plots, compared to those which received the N80 (CV=19.50) and N160 kg ha-1 (CV=11.59) treatments.

    Incremental yield gain from increase fertilizer dosages was significantly higher in monoculture, compared to biculture. There was no significant difference in yield between N160 and N80 in the biculture plots (12.29 vs 12.02 t ha-1). However, in monoculture plots, N160 yield was 23% higher than the N80 kg ha-1 (N160=11.74 vs N80=9.56 t ha-1).

    Mean yield of maize in rotation with winter wheat was 28% (2.47 tons) higher than monoculture maize. The greatest benefit of crop rotation was observed in the control plots (N0) with an incremental yield gain of 4.39 tons ha-1 over monculture maize (9.92 vs 5.43 t ha-1).

    Yield increased with higher fertilizer dosages in irrigated plots. Fertilizer application greatly increased the yield of maize and accounted for 48.9% of yield variances. The highest yield (11.92 t ha-1) was obtained with N160 kg ha-1 treatment, followed by N80 kg ha-1 (10.38 t ha-1) and N0 kg ha-1 (6.89 t ha-1) respectively.

    Overall mean yield difference between the two hybrids was not statistically significant, however, yield of FAO 380 was 3.9% higher (9.06 vs. 8.72 t ha-1) than FAO 490 in monoculture plots, while in biculture plots, FAO 490 was 4.1% higher than FAO 380.

    Average yield in 2018 was 13.6% (1.24 t ha-1) higher than 2017 for the same set of agrotechnical inputs, thus, highlighting the significant effect of cropyear.

    Armagnac (FAO 490) cultivated in rotation with winter wheat, under ripper tillage and N80 kg ha-1 is the best combination of treatments for optimum yield.

  • Yield of herbicide tolerant sunflower hybrids due to the different herbicide treatments
    121-125
    Views:
    190

    Sunflower is our most important oil-plant grown on the largest area in Hungary. In Europe sunflower has been grown since the 16th century. In recent years sunflower growing area is between 450-500 thousand hectares. Weed management in sunflower production is getting more and more difficult in case of annual and perennial dicotyledonous weeds, especially in dry springs. Two active ingredients, imazamox and tribenuron-methyl could be a solution for farmers for the control of these weeds in herbicide tolerant sunflower hybrids (Christensen-Reisinger 2000, Hódi-Torma 2004, Nagy et al. 2006). Most of the farmers choose the Clearfield technology and the use of tribenuron-methyl herbicides. In 2009 imazamox- (IMI) and tribenuron-methyl- (SU) tolerant sunflower hybrids were produced on 200 hectares in Hungary, of which 150 hectares was IMI, while 50 hectares was SU-hybrids. Small plot experiments were carried out to investigate the phytotoxicity of herbicides on imazamox (IMI) and tribenuron-methyl (SU) tolerant sunflower hybrids under field conditions. At harvest we measured the moisture content of achenes and average yield.

  • Impact assesment of soil conditioners on a high clay content soil
    137-141
    Views:
    260

    Our measurements were done in a soil conditioner experiment started in 2014 which was set in conventional tillage system at the Karcag Research Institute where a soil conditioner was used from 2010. Effect of two different soil conditioners on compaction, moisture content of the soil and on CO2-emission was studied. Measurements were done after sowing of maize and millet, and on stubble after harvesting. It can be established that less degree of compaction was characteristic to the soil of the plots treated for several years with the soil conditioner during the vegetation period than in case of untreated plots. Higher CO2-emission values were observed on the plots treated for several years than on the control plots. This effect can’t be established in case of soil conditioners used for first time in this year.

  • The main influencing factors effecting the yield of maize
    137-141
    Views:
    245

    Maize is one of Hungary’s major cereals. In the 1970s and 1980s, we were in the frontline regarding yields and genetic advancement. However, yield fluctuation in maize has increased to 50-60% from 10-20% since the 1980s, which was partly caused by the increase in weather extremes due to climate change and by agrotechnical shortcomings.
    The experiments were carried out on typical meadow soil in four repetitions in the period of 2007-2008. In the sowing time experiment, sowing was performed on 10 April, 25 April, 15 May under a uniform fertilization of N120, P2O580 K2O 110 kg/ha. In the fertilization experiment, the yielding capacity of 10 hybrids with different genetic characteristics was studied in a control (non-fertilized) treatment and basic treatment of N40 P2O5 25, K2O 30 kg ha-1 active ingredient and a treatment with fivefold dosages of the basic treatment. In the plant density experiment, the relationship between plant density and yield was analysed at plant densities of 45, 60 and 75 thousand plants per ha. We found a tight correlation between sowing time and yield and grain moisture content at harvest. We found that grain moisture can be reduced by 5-10% by applying an earlier sowing time.
    The agroecological optimum fertilizer dosage was N 40-120, P2O5 25-75, K2O 30-90 kg ha-1 active ingredient at a plant density of 60-90 thousand plants ha-1 depending on the hybrid and the year.

  • Interactive evaluation of the main agrotechnical factors in rape production
    71-79
    Views:
    227

    Our polifactorial rape research was carried out at Látókép Research Centre of Debreceni Egyetem AMTC, 15 km away from Debrecen. The aim was to study the unique effect and the interactive effect of more factors. The research factors were the following: cultivation, time of sowing and nutrient supply. Soil moisture datas proved unambiguously that increasing amounts of chemical fertilizer raise the water consumption of rape, lack of water in fertilized plots were always bigger then the water deficit in control plots. The highest amount of water deficit was experienced in the case of arable plots. However, increasing amounts of chemical fertilizers raised the amount of yield proportionately. We experienced yield depression only in the case of arable plots at the highest level of chemical fertilization. In polifactorial rape research sowing of 24th August 2007 of 2007/2008 was the most optimal in point of the amount of yield. This is most-significant in the case of loosening tillage and disking tillage plots, while the plots of ploughing lag behind those two in point of average yield. We experienced the biggest differences of yield in the case of different tillage plots of sowing on 24t August 2007. Still not even the plot with the highest average reached the limit of 4 tons, which can be attributed to high rate of lodging and the harvest loss caused by this. The biggest amount of yield was experienced in the case of sowing of 24th August 2007, with the highest level of chemical fertilization at loosening tillage plot (3930 kg/ha). We can observe big differences between the tillage methods; plots of loosening show a much better average yield then plots of disking and ploughing tillage. Considering the first observed crop year we can state that alternative tillage methods do have a future in rape growing of Hungary. 

  • The relationship between the nutrient supply and the yield of maize hybrids with different genetic traits on chernozem soil in variant years
    27-31
    Views:
    384

    The experiments were set on lime-coated chernozem soil in 2013 and in 2014, in our study four hybrids were included with different FAO number. We studied the effect of NPK fertilization and row spacing on the yield. The fertilizer doses were based on a 25-year longterm experiment. Compared to control, the N40 +PK treatment has also achieved a significant yield increase, although some hybrids responsed with yield loss to the increasing fertilizer doses; this effect was observed especially in 2014. The majority of hybrids reached higher yields in both years using the 50 cm row spacing. The water release of hybrids was measured weekly during the maturation, at the same time points. The rainy September slowed ripening and the water release of the hybrids in 2013, so the grain wet content at harvest showed higher values. The moisture contents were increased for some hybrids, in spite of the positive and favorable dynamic of water loss.

  • Site and hybrid-specific agrotechnical models in sweet corn production
    105-108
    Views:
    175

    The effect of three agrotechnical factors (sowing time, fertilization, plant density) and two genotypes on the crop yield of sweet corn was examined on chernozem soil in the Hajdúság region in two different crop years. Compared to the 30-year average, the climate was dry and warm in 2009 and humid in 2010. The experiments were conducted at the Látókép Research Site of the University of Debrecen. In the experiments we applied two sowing times (end of April, end of May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two crop density levels (45 thousand ha-1, 65 thousand ha-1). The hybrids we used were Jumbo and Enterprise. As regards the requirements of sweet corn production, the crop year of 2009 was dry and warm. The effect of moisture deficiency was more adverse on the crop yields with the second sowing time. On the contrary, the other examined year (2010) was significantly humid; the precipitation was 184 mm above the 30-year average and the temperature was average.
    In the dry and hot crop year, the best yields were obtained with the hybrid Jumbo (25677 kg-1) at 65 thousand ha-1 plant density level on the average of the fertilization levels. The crop yields of Enterprise were also the highest at high plant density level (24444 kg ha-1). With the second sowing time the highest yields were obtained at the higher plant density level (65 thousand ha-1) with both hybrids (Jumbo 18978 kg ha-1, Enterprise 18991 kg ha-1), which confirmed the good adaptation capability of these hybrids at high plant density level. In humid crop year with early sowing time the highest yielding hybrid was Enterprise (at 45 thousand ha-1 crop density level 20757 kg-1), at the same time, Jumbo was best yielding at the higher plant density level (18781 kg-1). With the second sowing time the highest crop yield was obtained with Enterprise again (20628 kg ha-1 at 65 thousand ha-1 plant density level). With this sowing time the average yields of Jumbo, was 18914 kg ha-1 respectively. We found that dry crop year and early sowing time provided the best conditions for sweet corn production; the highest yields were obtained under these circumstances, which might be the results of the outstanding water management of chernozem  soils.

  • Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
    121-126
    Views:
    167

    Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop production for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
    The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
    In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
    On the basis of results the following can be stated: 
    1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
    inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
    2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
    3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
    4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.

  • The effect of NPK fertilization and the number of plants on the yield of maize hybrids with different genetic base in half-industrial experiment
    103-108
    Views:
    372

    In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize.

    The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2, this it was a halfindustrial experiment. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. Yield increasing effect of the fertilizer also depended on the number of plants per hectare at a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants/ha.

    In Hajdúszoboszló, in 2015 the amount of rainfall from January to October was 340.3 mm, which was less than the average of 30 years by 105.5 mm. This year was not only draughty but it was also extremely hot, as the average temperature was higher by 1.7 °C than the average of 30 years. In the critical months of the growing season the distribution of precipitation was unfavourable for maize: in June the amount of rainfall was less by 31mm and in July by 42 mm than the average of many years.

    Unfavourable effects of the weather of year 2015 were reflected also by our experimental data. The yield of hybrids without fertilization changed between 5.28–7.13 t ha-1 depending on the number of plants.

    It can be associated also with the unfavourable crop year that the yield of the six tested hybrids is 6.33 t ha-1 in the average of the stand density of 60, 70 and 80 thousand plants per hectare without fertilization, while it is 7.14 t ha-1 with N80+PK fertilizer treatment. That increase in the yield is only 0.81 t ha-1, but it is significant. Due to the especially draughty weather the yield increasing effect of fertilizers was moderate. In the average of the hybrids and the number of plants, increasing the N80+PK treatment to N160+PK, the yield did not increase but decreased, which is explicable by the water scarcity in the period of flowering, fertilization and grain filling.

    The agroecological optimum of fertilization was N 80, P2O5 60 and K2O 70 kg ha-1. Due to the intense water scarcity, increased fertilization caused decrease in the yield. As for the number of plants, 70 000 plants ha-1 proved to be the optimum, and the further increase of the number of plants caused decrease in the yield.

  • The effect of grazing of various cattle breeds on botanical composition of low-lying pasture in Hortobágy
    57-63
    Views:
    585

    Coenological surveys were conducted in the Hortobágy National Park (Pap-ere and Zám-puszta) in May 2015 and 2016. During the tests,a total of 40 permanent plots were analyzed on grasslands grazed by extensive cattle (Hungarian Grey) and mixed genotype intensive cattle. The presence of plant species, percentages of total coverage of species and vegetation cover were recorded. Two habitat types were chosen according to their moisture content: wet salt marsh meadow (Bolboschoenetum maritimi) and drier salt meadows (Beckmannion eruciformis).

    We compared the impact of increased number of animals (2016 years) and the low number of animals (2015 years, initial state) and the grazing exclusion on vegetations.
    We tested: (i) what is the impact of grazing on the vegetation, (ii) how do species composition and vegetation charachteristics differ in the two habitat types (iii) and is there a difference in the impact of different cattle breeds (Hungarian gray, intensive beef cattle) grazing on the grasslands species composition? During the investigation we found, (i) that the greatest number of species was recorded in 2015, on the area that received moderate to intensive grazing (14.3 species per m2). Somewhat the number of species was reduced in 2016 due to more intensive grazing. The control group had the lowest number of species (11.7 species per m2). The undergrass and legumes cover significantly increased on intensive grazed lands. (ii) Our results indicate that the effects of different grazing differ in the two studied habitat types. On the drier grasslands greater number of species were found (16.2 species per m2), oppositely to the wet grassland (11.2 species per m2). The cover of the undergrasses was higher in the drier habitat than in the wet. (iii) The extensive beef cattle left a bigger number of species (16 species per m2) than the intensive beef cattle (11.4 species per m2). The grass cover was more intense on areas grazed by intensive cattle. The absolute and potential weeds cover showed a higher value on areas grazed by Hungarian Grey. Our two-year results suggest that grazing by both extensive and intensive cattle breeds can be a proper tool for the conservation management of alkali grasslands.

  • Examination of drought stress of two genotype maize hybrids with different fertilization
    53-57
    Views:
    233

    In the growing season of 2019, we analysed stress resulting from climatic factors on maize hybrids of different genotypes, with the aim of gaining a better understanding of the physiological responses of each hybrid, which might support the elaboration of a cost-effective irrigation plan.

    Our experiments were carried out at the Látókép Experimental Station of the University of Debrecen on calcareous chernozem soil in a small-plot long-term field trial with strip plot design. In the scope of the experiment, N-fertilizer doses were applied as basic fertilizer and top-dressing in addition to the non-fertilized (control) treatment. The 60 and 120 kg N/ha doses applied as basic fertilizers in the spring were followed by top-dressing in the V6 phenophase with a +30 kg N/ha dose. Measurements were carried out with the involvement of the Renfor early (FAO 320) and Fornad (FAO 420) late maturity hybrids-

    The stomata of the plants became more and more closed with the progression of the phenological phases; their stomatal conductance decreased. However, the hybrids responded differently to environmental stress. In the case of the Renfor hybrid, the highest conductance (669 mmol/m2-s) was recorded in the V12 phenophase with the 150 kg N/ha treatment. The stomata were more open due to the high turgor pressure, allowing plants to evaporate properly. The plant was in its worst physiological condition on 2nd July, at the time of the appearance of the last leaf in the case of the 120 kg N dose (224 mmol/m2-s). The value measured in the V12 phenophase has already shown that the stomata were closing due to the self-regulating system of the plant. It would have been necessary to dispense irrigation water following the measurement. This confirms the finding that water stress can be prevented by measuring stomatal conductance.

    In the case of the Fornad hybrid, stomatal conductance was the highest on 12th June (630 mmol/m2-s) in the 90 kg N/ha treatment and it was the lowest (183 mmol/m2-s) in VT (emergence of the last leaf) phenophase in the 60 kg N/ha treatment. In this case, the appropriate time for applying irrigation water would have been early July, when the conditions for the plants were still adequate. Subsequently, the stomata began to close due to a reduction of the water resources available to them.

    There was a significant correlation between soil moisture and stomatal conductance, as well as between temperature and stomatal conductance.

  • Technological development of sustainable maize production
    83-88
    Views:
    242

    In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize.
    The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly eight ha field. The size of one plot was 206 m2, this it was a half-industrial experiment. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. Yield increasing effect of the fertilizer also depended on the number of plants per hectare at a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants per ha.
    In Hajdúszoboszló, in 2016 the amount of rainfall from January to October was 605 mm, which was more than the average of 30 years by 160 mm. The yield of hybrids without fertilization changed between 9.63–11.6 t ha-1 depending on the number of plants.
    The six tested hybrids is 10.65 t ha-1 in the average of the stand density of 60, 70 and 80 thousand plants per hectare without fertilization, while it is 12.24 t ha-1 with N80+PK fertilizer treatment. That increase in the yield is 1.6 t ha-1, it is significant.
    Da Sonka hybrid is sensitive to weather, it is able to produce 6 t ha-1 additional yield in case of favourable condition. However, it has a low stress tolerance. The most stable yields were observed at Kamaria and Pioneer hybrids. The effect of vintage is also an important factor on the yield. In average, the yield of maize was 6.81 t ha-1 in 2015, which was a drought year and 11.86 t ha-1 in 2016 that was a favourable year.

  • Examination and statistical evaluation of physico-chemical parameters of windrow composting
    33-38
    Views:
    427

     

    The treatment and utilization of plant and animal waste and by-products from agriculture is very diverse. Traditional environmental management practices for waste management have been retained through soil conservation and the applied of recycle degradable organic substances in soil. The management of by-products from agriculture (animal husbandry) is important because a closed loop can be created to utilize by-products (manure, feathers) from the production of the main product (eggs, meat, milk) and to form a raw material for a new product. It is important to treat the resulting by-products, especially deep-litter manure, as it has served as a basis for compost-treated manure to develop an organic-based, soil-conditioning product line. Poultry manure by itself is not suitable as a substrate for aerobic decomposition, so it has to be mixed with other substances (zeolite, bentonite, soil), because of its high nutrient capacity, it is an acidifying substance.

    The aim of this study was to compost the mixture of poultry manure and hen manure by the addition of zeolite and to monitor the composting process. It was also our aim to statistically determine the effect of the zeolite on parameters describing the composting process.

    The windrow composting experiments were set up in the composting area of the University of Debrecen, Institute of Water and Environmental Management. The composting experiment was 62 days long, during which the main parameters describing the composting process were continuously monitored: temperature (°C), moisture content (w/w%), electrical conductivity (mS/cm), organic matter content (w/w%), examination of nitrogen forms (w/w%). In this study, three factors were investigated: temperature, humidity, and pH. For statistical evaluation, R software and RStudio user interface were used. We developed a repeated measurement model, in which the fixed and random effects were determined for our parameters under study, and the resulting relationships were shown on interaction plots.

    Based on our results, the temperature of the prisms has become independent of the ambient temperature and the composting stages can be separated in both the control and the zeolite treated prisms. In the repeated measurement model, we proved that treatment, time and treatment: time interaction were significant at both temperature and pH.