Search

Published After
Published Before

Search Results

  • Research of different adjuvants and yeast dosages in honey fermentation process
    5-7
    Views:
    136

    In order to ferment honey it is necessary to add in the fermentation environment some substances with the role of adjuvants, to improve the honey must composition and to help the fermentation process. There were tested 2 different combination of adjuvants which were analyzed in the fermentation process. Also the physical and chemical properties of the final products were analyzed. After establishing the most suitable mix of adjuvants it was necessary to test the right dosage of the yeast used to metabolized sugars: Saccharomyces cerevisiae, in order to obtain appropriate organoleptic properties.

  • Effects of ingredients and processing conditions on the quality frozen dough bread made from diferent wheat flour
    115-120
    Views:
    67

    A laboratory scale no-time frozen dough procedure that approximates Romanian commercial practice has been
    developed and used to study the effects of ingredients and processing conditions on the bread quality of a straight
    grade wheat flour during prolonged storage (2 days to 26 weeks). All treatments (baking absorption level, mixing
    energy input, mixer type, fermentation and intermediate proof times, removal of oxidant and/or dough
    strengthening conditioners and partial freeze-thaw cycles) had significant effects (P<0.05) upon bread quality (loaf
    volume and/or bread score). In general, these effects were more pronounced with extended frozen storage time.
    High baking absorption, undermixing, bulk fermentation (> 1 h) and removal of oxidant and/or surfactants had
    the most dramatic effects. Addition of a very strong flour at 30% to strengthen the wheat flour had no significant
    effect (P>0.05) upon bread quality under optimum conditions.

  • Variation of boza nutrition parameters based on raw materials
    67-70
    Views:
    147

    Boza is a ceral based fermented drink. Raw material of boza could be rise, millet, wheat and rye. Because of the diversity of raw materilas and the method of fermentation boza might show varied quality and nutrition value.

    Nowadays healthy and conscious nutrition are playing more and more important roles in our lives. People pay an ever growing attention to the nutrition value of products, such as protein- and sugar content, components with antioxidant properties, and the mineral content of the products. In our research we wanted to know how the protein,-, sugar-, total polifenol-, mikro- and macro element content of products change.

  • Plant production possibilities on a heavy metal contaminated soil with the purpose of biorefinery
    215-222
    Views:
    72

    Significant part of not cultivated area of Hungary is not suitable for agricultural utilization because of industrial
    pollution. Technologies of biorefinery make reutilization of contaminated areas possible. Biomass of plants
    produced on polluted soils can be raw material of valuable products. Applicability of biorefinery was tested on a
    heavy metal polluted soil, where the contamination originated from previous mining activity. Complete biomass
    utilization was aimed to obtain cosmetic ingredients, pharmaceutical agents, and precursors. During our research
    work 88 plant species and varieties were produced and tested for potential utilizable components. Levels of
    possible contaminants in these plants were monitored, and amounts of carbohydrates, protein, organic acid and
    cellulose were determined as well. Different plant extracts were tested as potential sources of biologically effective
    components or as raw materials for lactic acid fermentation. Our results show that biorefinery is a real possibility
    for utilization of polluted areas. Numerous plants could be cultivated on contaminated areas without increased
    levels of contaminants in their tissues, thus they can be sources of valuable compounds.

  • The examination of relation between the C/N ratio and the biogas yields in the Regional Biogas Plant of Nyírbátor
    63-68
    Views:
    83

    The Regional Biogas Plant of Nyírbátor was built by the Bátortrade Ltd. The biogas plant contains 6 mezophil and 6 thermophil fermentation tanks, because the biogas production is based on mixed compositions. The regional plant is a multifunctional system. It produces agricultural products and biogas with high methane content. The utilization of biogas is also accomplished here; gas-engines transform it to electricity and
    heat-energy. The product electricity is used by the local plants, the surplus is sold. 
    The aim of the research is the examination of the quality and quantity of the input materials that put into the mixers and follow the seasonal, periodical and optional changes of the input materials. The analyzation of the quality and quantity data can give an answer to the optional changes of biogas production because the input materials determine the composition of the examined recipe. The C/N ratio was between 11-13, the maximal value of the biogas yield was observed by 12.35 C/N ratio.

  • Effects of paraffine oil on leaf and berry mycobiota on two grape varieties
    61-66
    Views:
    189

    Application of fungicides have advantages and also some direct or indirect disadvantages, such as imbalance and/or fungicide resistance in microbe population. To avoid these problems the development of alternative, eco-friendly methods like mostly spraying with oils are in the focus nowadays. The investigations of the effects of fungicides on microbiota in some cultivations can give a more complex view to this topic and developmental possibilities. In the present study, our aim was testing of the effects of paraffine oil (as alternative fungicide) on microbial properties (CFU and rate of filamentous fungi and yeasts) of Chardonnay and Kékfrankos leaves and berries.

    Our results from 2014 showed that the application of paraffine oil as sole spray agent can decrease the presence of saprophytic filamentous fungi on the berries of Chardonnay (susceptible for fungal infections). In the case of Kékfrankos berries opposite properties were observed, which may be the result of the absorption of oil by the thick wax layer of this variety. The oil treatment did not affect the yeast population of Chardonnay and Kékfrankos berries contrary to negative effect of the regular pesticide treatment. The selective fungicide effect of paraffine oil against filamentous fungal population caused the accumulation of yeast cells in the mycobiota of grape berries. The careful use of this yeasts in spontaneous fermentation can improve the aroma profile of wines. The year of 2015 did no prefer the growth of fungi, therefore no interesting properties were detected in the mycobiota of grape varieties. The occurence of the harmful saprophytic filamentous fungi predicted to be increased in mild climate agricultures as the result of the climate change.

    In summary, the paraffine oils are seem to be promising tools for the eco-friendly control of harmful fungi of grapes.

  • Assessment of energy generated by biogas production in the educational industrial unit of the University of Szeged, Faculty of Agriculture, with special regard to biomass originating from agriculture and the food industry
    137-140
    Views:
    77

    The importance of waste treatment is increasing. Environmental aims are the main driving force. Stricter regulations for landfills lead to the development of alternative treatment methods for waste. For agro-mechanical research, wastes from animal rearing and the food industry, secondary-tertiary biomass, is of deep concern. Available technology is versatile and relatively simple to use as a reliable and effective means of producing a gaseous fuel from various organic waste. The most common application has been the digestion of animal dung, agricultural, and food-industrial waste. This was studied by our department in our pilot farm of our Faculty. The 50-dairy cow, family sized model farm was built in the summer of 1991, as a result of a Dutch – Hungarian cooperation, on the property of the Faculty. The new pig farm, with 30 sows, and the new goat farm, with 100 nannies, was given to the Faculty on 25 April 2001. On the basis of livestock data, the annual dung production and the producible energy were determinate. The energy was calculated by biogas production coefficients in literature.

  • Ecotoxicological impact of DON toxin on maize (Zea mays L.) germination
    35-40
    Views:
    147

    Fusarium graminearum is one of the most significant arable pathogen in Hungary, and various types of trichothecene mycotoxins (mostly DON, deoxynivalenol) are detected most commonly in cereals (Biró et al., 2011). Fusarium infection and mycotoxin production could not be eliminated, and infected maize by Fusarium sp. cannot be exploited as food, seed, or animal feed. However it can be raw material of biogas production. In this research we would like to investigate the content and effect of the toxin in the end product of biogas production on plant germination. The Fusarium sp. can cause mildew and seedling mortality in seed of maize (Zea mays L.), so we examine the effect of this on germination. In preliminary examination Fusarium sp. was not detected in the bioreactor of the Institute after the retention time (30 day), however it can be assumed that during the hydrolysis of the fungus growth and mycotoxin production also increased exponentially. There were no appropriate tools to detect the toxin in the end product of biogas production so modelling of anaerobic hydrolysis was necessary. The effects of hydrolyzed product for germination were also detected.

  • Herbicide tolerance of maize genotypes in the wet 2016 year
    13-18
    Views:
    144

    The herbicide tolerance levels of 49 Martonvásár inbred parents were examined in Martonvásár in a herbicide susceptibility trial in 2016. The normal dosage recommended in the permit documentations and double dosage were used for the 12 small-plot herbicide treatments performed in two repetitions. Spraying of early post-emergent herbicides was carried out in the 1–2-leaf stage, while post-emergent treatments were applied in the 7–8-leaf stage of maize. The extent of phytotoxicity was scored for the early post-emergent herbicides two and four weeks after treatments and for the post-emergent herbicides two weeks after treatments, respectively. Some of the herbicides examined are not approved in seed production; however it is important to know the reaction of maize parent genotypes for every type of herbicides. The active agent topramezone was withdrawn from the market in 2015, but it was included in the trials as its usage was allowed until stocks run out in 2016. The herbicide agents were examined as follows: mesotrione + S-metolachlor + terbutylazine; isoxaflutol + tiencarbazon methyl + cyprosulfamide; isoxaflutol + cyprosulfamide; mesotrione + terbuthylazine; tembotrione + isoxidifen-ethyl; mesotrione + nicosulfuron; prosulfu ron; nicosulfuron +prosulfuron + dicamba; bentazone + dicamba; nicosulfuron; topramezone; foramsulfuron + isoxadifen-ethyl.
    Among early post-emergent herbicides, isoxaflutol + cyprosulfamide caused the less phytotoxic damage in the genotypes. The large amount of precipitation during the spring facilitated the infiltration of the active ingredient S-metolachlor, used regularly and successfully also in seed production, into the root zone, resulting in phytotoxic symptoms on susceptible inbred lines at the time of the first inspection. These genotypes recovered by the end of the vegetation period. The spring weather was cooler than usual, retarding the development of maize and thus led to the slower fermentation of herbicide active ingredients, accordingly, all of the post-emergent herbicides caused visible phytotoxic symptoms on some of genotypes. The most severe damages were generally caused by the double dosage of nicosulfuron + prosulfuron + dicamba, nicosulfuron, and foramsulfuron + isoxadifen-ethyl.

  • Bioreactor in the service of sustainable development
    111-118
    Views:
    125

    The control of our relationship with our environment is one of the greatest challenges of the 21st century. This has an effect on the economic and social processes and the human activities. All of these are included in a new developmental strategy: the strategy of sustainable development.
    The strategy of sustainable development prevails by the new technologies and it is realized on high-tech level as the fermentation manipulation of organic materials, biogas production and production of “green” electric current. 
    One of Europe’s largest bioreactors has been established in Nyírbátor in Hungary at first (chief executive: Mihály Petis).

  • Evaluation of automated anaerobic fermentation processes as in the case of mould infected maize
    81-86
    Views:
    146

    In Hungary the renewable energy utilization is planned to achieve 13% by 2020. Biogas production is one of the fields with the largest energy potential. Achieving high efficiency during continuous production despite the mixed and variable composition of input materials is the most common problem which the newly built biogas plants using agricultural raw materials have to deal with. The first experimental reactors at the Department of Water and Environmental Management were built 12 years ago. Control and automation of the four separated bioreactors were executed with ADVANTECH GENIE 3.0 software which granted pre-programmed measurement and points of intervention for pH, temperature, CH4, CO2, H2S, and NH3. The system became out-of-data, therefore in 2010 it has been redesigned and tested. The system is controlled by Compair Proview SCADA (Supervisory Control and Data Acquisition) software running on Linux platforms. The Fusarium infection caused serious yield-losses in cereal production in 2010. In the case of cereal products, which non-utilizable as forage seems an optimal solution is utilizing as biogas raw material. The raw material was based on the Fusarium infected maize. In the recent publication infotechnological and technological experiences of the pilot test period are evaluated as well as direction of future development is defined.

  • Application of yeasts fortified with microelements – Review
    101-106
    Views:
    120

    Microelements are increasingly becoming into the focus of interest from both a point of view of nutrition science and feeding. An always growing care must be paid to the microelements coverage both in human and animal organisms because of incorrect alimentation habits and
    unsatisfactory feedstuff nutrition value. For the increased supply of the micro-nutrients, enrichment or fortification with microelements can not only be realized with traditional foodstuffs and forage but there are already alternative ways such as single-cell proteins from yeasts directly enriched or fortified with microelements for the purpose.
    We would like to draw the attention that the production of these items is more favourable in comparison with traditional foodstuffs or forage since yeasts are capable to multiply microelement levels compared to their original state, and establish organic bonds with them.
    For this purpose, we explored and analysed the scientific literature, studies and research results on this subject, that is why we stressed the significance of yeasts, the features and health effects of certain microelements, as well as the possibilities for use of yeasts enriched with micro-nutrients.

  • N-fertilization using „Biofert” in Sustainable Maize Production
    30-33
    Views:
    94

    In synthetic fermentation of lysine (amino-acid) a by-product (Biofert) originates which can be characterized by 6% N-content and other ingredients (vitamins, enzymes, micro-elements etc). In small and large plot experiments Biofert was studied in different agroecological (cropyear, soil), biological (genotypes) and agrotechnical (non-irrigated and irrigated; N-splitting etc) conditions in order to obtain information about agronomic efficiency and environmental effects of its applications.
    Our results proved that Biofert has the same agronomic efficiency as traditional N-fertilizers (applied in equal doses and splitting), but Biofert has economic and environmental advantages (less N-leaching in soils) for maize production. We found a special interaction between N-supply and irrigation. In maize production (irrigation) with the optimum application of nutrient- (N-fertilization, Biofert) and water- supply we could stabilize maize yields at a high level (11.0-14.0 t/ha) fairly independently of agroecological factors. When applying Biofert in autumn, NO3-N leaching was less in 100-200 cm chernozem soil-layers than for applications of traditional N-fertilizer. There were no differences between different maize genotypes concerning the agronomic efficiency of Biofert. In maize production 120-190 kg/ha N (chernozem soil) and 165 kg/ha N (meadow soil) doses of Biofert were the optimum doses in splitting applications (autumn + spring).

  • Detailed specification of the steps of dry milling ethanol production
    123-126
    Views:
    98

    Durring the 2011 year I was given the possibilty to study in Indiana, USA for 5 months with the help of the Bloomington fellowship, and had the chance to study the bioethanol production in the given state. I focused mainly on the details of corn based dry milling large scale bioethanol production. The dry milling process is a relatively common production mode in the USA. In the coure of my research I tried to compare and to highlite the advantages of the dry milling process contrasted with the wet milling bioethanol production.

  • Influencing the growth kinetics of yeast strains with vitamin supplementation
    113-115
    Views:
    143

    The aim of the current experiment was to optimize the creation process of single cell protein on plant-based substrate solution with the intention to improve end-product turn out by means of adding vitamin solution. Based on the results of the fermentation processes of yeast strains, it was concluded that the vitamin-supplementation produced its greatest effect on the dry matter production, primarily on the K. marxianus DSM 4908 strain, while it was less beneficent when it comes to the figures of wet cell mass. In addition, it can be assumed that vitamin supplementation increased the maximum specific rate of growth (μmax) and decreased the generation time (tg) significantly. In the case of the K. marxianus yeast strain on corn steep liquor treated with vitamin-supplementation, the highest (μmax) and the lowest (tg) data were observed [(0.226 h-1) and (4.4 h), respectively]. Based on the results it was found that K. marxianus DSM 4908 is expedient to be applied on corn steep liquor medium in order to determine its suitability to produce additive for feeding.

  • The Effects of Corn Cobs in Feed
    51-54
    Views:
    95

    This study is part of a larger research work that aims to establish the usefulness of corn cobs, a low cost dietary resource, in the growth of ruminants. Corn cobs are found in large amounts in our country (8.2 mil. tons/year). Increasing the quantity of corn cobs to 50% of the diet in lambs resulted in a decrease by 14.57% in the concentrate intake that is needed to obtain one-kg weight increase. In addition, the diet costs were reduced by 16.33% (Mierliţă, 1999). Increasing the quantity of corn cobs to 20-50% of the diet also resulted in multiplication of bacteria from genus Ruminococcus, that are known to represent about 70-80% of the bacteria population in the rumen. In addition, an increased multiplication rate of large protozoas (i.e. Epidinium, Isotrichia, Diplodinium etc) was observed. This explains the high conversion rate of piruvic acid, a carbohydrate fermentation product, into acetic acid, whereas conversion of piruvic acid into propionic acid decreases. In addition, feed intake and the quantity of digested and absorbed fibers increased by 8.46% and 35.09%, respectively. Thus, a reduction in dietary concentrates needed as nutrient supplies was achieved.

  • Utilization and examination of red, elemental selenium nano spheres, produced by fermentation technology, in animal tests
    245-247
    Views:
    108

    In our experiments we tested the toxicity of Nano-Se and LactoMicroSel® compared with other organic and inorganic selenium forms, in case of a subakut animal test. We produced the Nano-Se and LactoMicroSel® by probiotic lactic acid bacteria in our laboratory. (Prokisch et al., 2010; Eszenyi et al., 2011). We mixed the inorganic selenium forms, selenite and selenate, the organic form, Sel-Plex® and our products, Nano-Se and LactoMicroSel® into the standard food of laboratory mice and we fed them for two consecutive weeks. After the extermination we observed mortality, the change of body mass,and measured the blood antioxidant capacity with FRAP method.

  • Characterisation of a thermotolerant yeast, Kluyveromyces marxianus CBS712
    7-13
    Views:
    97

    Fermentation at high temperature with application of thermotolerant microorganisms is a technological advantage in bioethanol production. Among the yeasts, K. marxianus has outstanding thermotolarance. The industrial application of the IMB3 strain occurs usually at 45C. The final aim of our project is the genetic modification of the K. marxianus CBS712 strain in order to achieve ethanol production at higher temperature than the currently applied. This requires the characterization of the CBS712 strain, with special attention to the determination of the temperature limit of its growth and the amount of the ethanol produced. The temperature limit of growth was 48C in YPD medium. Elevation of the temperature above 45C led to an exponential drop of the cell viability. Ethanol production was tested in shaking flasks, in MYFM medium, under oxigene limited conditions, applying variable concentrations of glucose (12–20%) and different temperatures (45–47 ºC). Preliminary results have revealed that the elevation of glucose concentration increased the amount of ethanol produced. The amount of ethanol (appr. 5%)+ produced at the highest glucose concentration was not different at the tested temperatures (45, 46 and 47 ºC). The observation indicates the potential in raising the thermotolerance of the strain.